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Wavy film flows down an inclined plane: Perturbation theory and general evolution equation
for the film thickness

A. L. Frenkel and K. Indireshkumar
Department of Mathematics, University of Alabama, Tuscaloosa, Alabama 35487-0350
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Wavy film flow of incompressible Newtonian fluid down an inclined plane is considered. The question is
posed as to the parametric conditions under which the description of evolution can be approximately reduced
for all time to a single evolution equation for the film thickness. An unconventional perturbation approach
yields the most general evolution equation and least restrictive conditions on its validity. The advantages of
this equation for analytical and numerical studies of three-dimensional waves in inclined films are pointed out.
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I. INTRODUCTION

Thin liquid layers ~‘‘films’’ ! flowing along solid
surfaces—such as inclined planes or vertical cylinder
occur in both natural and man-made environments. Indus
applications of film flows started as long ago as the 18
and have been growing in their scope and importance e
since~see, e.g., Refs.@1,2#!.

Accordingly, the studies of film flows, in particular thos
down an inclined plane, have a considerable history~see,
e.g., Refs.@1,3#!. However, the dynamics of nonlinear wav
~typically present in film flows! is still far from being satis-
factorily understood~see Refs.@4,5# for the most recent
progress reviews!. The nonlinear Navier-Stokes~NS! partial
differential equations~PDEs! of this ‘‘Kapitza problem’’
couple together several fields~pressure and the componen
of velocity!, each a function of time and three spatial coo
dinates. Furthermore, the boundary conditions~BCs! of the
problem involve a free boundary~the free surface of the film!
whose PDE itself is coupled to the NS equations. The
spatially three-dimensional~3D! problem is too hard to
simulate even with the most powerful modern computers

Even simpler, 2D computations of wavy films have be
undertaken only under the simplifying assumptions of sh
spatial intervals~e.g., Refs.@6,7#! and/or time independenc
~e.g., Ref.@8#!. However, 2D flows are frequently unstable
3D disturbances, and three dimensionality can be impor
for many inclined films~see, e.g., recent experiments in R
@9#!.

Therefore, naturally, one looks for more manageableap-
proximatedescriptions of wavy-film evolution. Such simpl
fied theories are possible in certain domains of the spac
parameters~for which, typically, the slopes of the surfac
waves are small!. Of course, the greater simplification has
be paid for by a more limited applicability of the theory. Th
greatest simplification is achieved when the problem redu
to a single evolution PDE approximating the thickness of
film. @From the numerical-simulation point of view, the mo
important simplification here is the reduction in the numb
of independent spatial variables, and even a low
dimensionalsystemof equations would have been not mu
more difficult than asingle evolution equation~EE!. How-
PRE 601063-651X/99/60~4!/4143~15!/$15.00
al
s
er

-

ll

n
rt

nt
.

of

es
e

r
r-

ever, no such system has ever been derived consistentl
an inclined single layer film, the subject of our considerati
in this paper. The same is true for thenonlocal, i.e., integro-
differential, film-thickness equations.~The only known ex-
ample @18# of such a nonlocal EE, as far as film flows a
concerned, is an EE for a core-annular flow, and not for
inclined film.! In any case, in this paper, the nonlocal equ
tions are altogether excluded from the consideration; th
when we say ‘‘the most general EE,’’ it should be unde
stood as ‘‘the most generallocal EE,’’ etc.# Although less
drastic simplifications than a single EE~and therefore having
a larger parametric range of validity! are known~see, e.g.,
Ref. @5#!, so far fully dimensional simulations for sufficientl
extended spatial domains have been carried out@4,10# only
for the theories hinged on a single evolution equation. S
single EE theories of inclined-film flows are the subject
the present paper.

Evolution equations for film thickness have been kno
since the pioneering work of Benney@11#. The conventional
perturbation approach to their derivation~e.g., Refs.@12–
15#! used a small~long-wave! parameter, saye. In particular,
each of the ‘‘global’’ ~‘‘internal,’’ ‘‘basic’’ ! parameters
specifying the problem~the parameters appearing in the d
mensionless NS equations and the free-surface BCs! must be
ascribed, in such a single-parameter~SP! technique, a certain
power of e as its order of magnitude (OM). Therefore, an
artificial dependence is forced on the—intrinsica
independent—parameters. This unnecessarily restricts
domain of justified validity of the resulting EE. For exampl
for the vertical film, there are just two independent para
eters: the ‘‘Reynolds number’’R and the ‘‘Weber number’’
W. If R is of the order of magnitude of (;)ea and W;eb,
thenW;Rb/a. The set of pointsW5Rb/a is just a 1D curve
in the 2D space (R,W), while the complete domain fo
which the EE is valid is likely to have the same dimensio
ality as the parameter space (R,W) itself, that is it should be
a 2D domain.

Furthermore, each time the powers assigned to the par
eters are altered it is, in principle, necessary to again
through the entire procedure or the SP derivation, and
can arrive at a different EE as a result. For example, Top
and Kawahara@16# considered two cases of an inclined-fil
4143 © 1999 The American Physical Society
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flow ~such a flow is specified bythreeglobal parameters; in
addition toR andW, the inclination angleu can be indepen-
dently varied!. In one case, they required the anglef
([p/22u) of the film plane with the vertical to be smal
f;e, and stipulatedR;e1 andW;e21 ~in our definitions
of R andW; see Sec. II below!. As a result, they obtained a
EE containingboth dissipative and dispersive terms~and
with all coefficients in the EE being;1). However, their
second case, for which they chose cotu;1, R;1, andW
;e21, resulted in an equation withno dispersive terms.~In
the SP framework, it is only formally that the latter equati
can be obtained from the former by omitting its dispers
term, and the only way to really ‘‘justify’’ the nondispersiv
equation is to repeat the entire derivation procedure star
all the way back from the NS equations.!

If a given inclined-film system is not close to any of the
two parameter-space curves, the theory@16# is invalid. Logi-
cally, there are three possibilities:~i! the flow evolution can-
not be~approximately! reduced to a single EE for all time
~ii ! such a reductionis possible but the resulting EE is dif
ferent from each of those obtained in Ref.@16#, or ~iii ! the
EE coincideswith one of their two EEs, despite the differe
parameter curve. We are naturally led to the following qu
tions: ~i! Under what~parametric! conditions is an approxi-
mate description of the film flow possible~for all time!
which can be reduced to a single EE?~ii ! How can the set of
all such EEs be characterized? These are the question
pose and attempt to answer, for inclined-film flow, in th
paper.

We note that one must distinguish between theall-time
validity of an EE and thelimited in time validity. This issue
arises because, in the SP approach, the fixed powers o
small parameter are stipulated not only for the global para
eters of the system, which do not depend on time, but a
for the characteristic time and length scales. However, th
characteristic scales can change with time as thedissipative
system proceeds to the attractor; so, they areinstantaneous
parameters. Thus, the assumption of fixed scales is inco
after a limited time has elapsed and, therefore, the SP d
vation is invalid.

The rest of the paper is organized as follows. In Sec.
we formulate the full NS problem. In Sec. III, we introduc
an iterative perturbation procedure. It starts with the we
known ~although typically unstable!, waveless, ‘‘Nusselt’’
solution of the NS problem. The only principle necessary
deciding the iteration steps is the requirement that in the e
a single~and valid for all time! EE should be arrived at, with
minimal simplification of exact equations. No dependenc
are imposed on the internal parameters: the validity con
tions ~VCs! we obtain require that several quantities, whi
are certain products of powers of the internal parameters
small—independentlyof one another.@So, severalindepen-
dent ~small! parameters emerge in the derivation. Thus,
iterative procedure we introduce here is a variation of
‘‘multiparametric’’ perturbation approach developed in Re
@17–20#.#

In Sec. IV, we arrive at the most general evolution eq
tion ~GEE! valid ~provided certain restrictions on paramete
are satisfied! for all time; any all-time-valid EE derivable
with a conventional single-parameter approach necess
coincides with one of just a few prototype equations wh
g
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are certain truncations of the GEE. The GEE also has
least restrictive domain of validity; it is easy to obtain th
domain of validity for each simplified EE, and it is a subd
main of the all-embracing~corresponding to the GEE! valid-
ity domain. Outside of the latter parametric domain, there
no single EE which could approximate the film evolution f
all time. That this is the case is argued in Sec. V by anal
ing the structure of possible correction terms of the
through all orders of the iteration procedure.@In particular, as
was shown in Refs.@21,22# —where a different derivation o
the same EE was sketched—theamplitudesof inclined-film
waves, which can be described~for all time! by a single EE,
are necessarilysmall.# The paper is summarized in the la
section. Some of the more technical considerations are
egated to the Appendix.

Simulation results for different versions of the incline
film flow EEs we obtain here will be given elsewhere.@For
some of those results~in particular, those showing goo
agreement with experiments@9#!, see Ref.@4#.#

II. EXACT NAVIER-STOKES PROBLEM

We consider a layer of an incompressible Newtonian l
uid flowing down an inclined plane under the action of gra
ity. Our ~Cartesian! coordinates are as follows: thex̄ axis is
normal to the plane and directed into the film, theȳ axis is in
the spanwise direction, and thez̄ axis is directed streamwis
~the overbar here and below indicates adimensionalquan-
tity!. The corresponding components of velocity areū, v̄,
and w̄. We denote byp̄ the pressure field in the film; the
pressure of the ambient passive gas is neglected for sim
ity.

The system is determined by the following independ
~dimensional! parameters: the average thickness of the fi
h̄0; the liquid densityr̄, viscositym̄, and surface tensions̄;
gravity accelerationḡ; and the angle of the plane with th
horizontalu.

There is a well-known time-independent Nusselt’s so
tion of the NS problem for the inclined film. The thickness
the Nusselt film is constant~hence, Nusselt’s flow is also
referred to as a ‘‘flat-film’’ solution!. The only nonzero com-
ponent of velocity is the streamwise one. It only chang
across the film, starting from the zero value at the so
plane. The free-surface valueŪ of the Nusselt velocity is
Ū5ḡh̄0

2 sinu/(2n̄) ~where n̄5m̄/ r̄ is the kinematic viscos-
ity!. We nondimensionalize all quantities with units of me

surement based onr̄, h̄0, andŪ ~we have, e.g., the following
units: h̄0 for all coordinates,Ū for velocities,h̄0 /Ū for time

t, r̄Ū2 for pressure,r̄Ū2h̄0 for surface tension, etc.!. We
will see that exactly three independentbasic parameters
~BPs! appear in thedimensionlessequations and boundar
conditions of the problem; one can choose, e.g., the
clination angle u, the Reynolds numberR[h̄0Ū/ n̄

@5ḡh̄0
3 sinu/(2n̄2)#, and the Weber numberW[sR/2

@5s̄/( r̄ḡh̄0
2 sinu)#, as such BPs.

We can write the Navier-Stokes momentum equations
coordinates moving relative to the solid plane with a const
velocity V in the z direction ~i.e., introducingz̃5z2Vt and
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omitting the tilde! in the following dimensionless form~see,
e.g., Ref.@23#!:

ut1uux1vuy1wuz2Vuz

52px2
2

R
cotu1

1

R
~uxx1uyy1uzz!, ~1!

v t1uvx1vvy1wvz2Vvz

52py1
1

R
~vxx1vyy1vzz!, ~2!

wt1uwx1vwy1wwz2Vwz

52pz1
2

R
1

1

R
~wxx1wyy1wzz!. ~3!

~The subscriptsx, y, z, and t here and below denote th
corresponding partial derivatives. We will see below that i
appropriate to chooseV52, the common phase velocity o
all infinitesimally weak waves.! The continuity equation is

ux1vy1wz50. ~4!

The BCs are as follows. The no-slip conditions at the so
plane are

u5v5w50 ~x50!. ~5!

The tangential-stress balance conditions at the free sur
x5h(y,z,t), the local film thickness, are

~vx1uy!~12hy
2!12~ux2vy!hy2~vz1wy!hz

2~uz1wx!hyhz50 ~x5h! ~6!

and

~uz1wx!~12hz
2!12~ux2wz!hz2~vz1wy!hy

2~uy1vx!hyhz50 ~x5h!. ~7!

The normal-stress balance condition is

2p~11hy
21hz

2!3/21
2

R
@ux1vyhy

21wzhz
2

2~uy1vx!hy1~vz1wy!hyhz

2~uz1wx!hz#~11hy
21hz

2!1/2

5s@hyy~11hz
2!1hzz~11hy

2!22hyhzhzy# ~x5h!.

~8!

Finally, the kinematic condition at the free surface is

ht1vhy1whz2Vhz5u ~x5h!. ~9!

III. ITERATIVE PERTURBATION PROCEDURE

A. Minimal requirement of derivability

As was motivated in the Introduction, we are interested
the question of~approximate! reducibility of the above com-
plicated description of inclined-film dynamics to a single E
s

d

ce

n

.

It appears that aniterativeperturbation approach is appropr
ate for the general analysis of the problem.

Looking at the previously known, conventional~single-
parameter expansion! derivations of EEs~valid each for its
own particular curve in the parameter space; see the In
duction!, it is clear that each of them in effect discards som
terms of the NS momentum equations so that each of th
essentially becomes an ordinary differential equation~ODE!
in x, linear and with constant coefficients, that is easy
solve ~with similar simplifications in BCs!. When these so-
lutions ~for velocities in terms of film thickness! are substi-
tuted into the kinematic condition~9!, the EE for thicknessh
~or, equivalently, for the thickness deviationh[h21) en-
sues. However, after all the quantities have been expande
power of e ~see the Introduction!, one has no control ove
which NS terms to omit; this is simply dictated by the e
pansion scheme of the SP approach. Thus, someti
‘‘harmless’’ terms are discarded; even if they were retain
one still would be able to solve for velocities, arriving, as
result, at a clearlymore generalEE.

Accordingly, our main idea in this paper is to look for
derivation in which the single postulated requirement wo
be that a maximally general EE for film thickness be arriv
at in the end, so only those terms of the exact NS equat
will be discarded which are clearly in the way of obtainin
linear ODEs for velocities and pressure@we call this prin-
ciple the ‘‘minimal requirement of derivability’’~MRD!#. In
this way we obtain approximate solutions for the deviatio
of exact solutions from the ‘‘seed’’ Nusselt’s fields@e.g., the
approximationw0 to w̃0[w2wN , where the NusseltwN is
known; see Eq.~12! below#. For some parameter values, th
immediately leads to an EE whose approximation of ex
evolution is good for all time~here, as was mentioned in th
Introduction, we are only interested in such all-time-va
EEs; see, e.g., Ref.@4# for a further discussion of their dif-
ference from the EEs whose validity islimited in time!. In
other cases, however, the procedure must be repeated,
the refined solutions, such aswN1w0, playing the seed role
that was played by the Nusselt solutions on the original st
~so that at the second iteration stage one determines the
proximationw1 to w̃1[w2wN2w0, etc.!. Thus, ours is an
iterativeperturbation approach, which is known even in ge
eral to be an alternative to theexpansionmethod~see, e.g.,
Ref. @24#!.

Estimating all members of NS problem equations in ter
of parameters, the requirement that the discarded mem
be much smaller than those retained leads to the param
conditions for our derivation to be valid~see Appendix A!.
Thus, the method yields~i! the evolution equation for film
thickness,~ii ! explicit expressions for velocity componen
and pressure in terms of the film thickness, and~iii ! the para-
metric validity conditions of the theory.

It is known ~see Ref.@4# and references therein! that no
single EE description can exist globally in time for tho
parametric regimes of inclined-film flow which lead to th
eventual amplitude of surface waves being ‘‘large’’—
comparable to the average film thickness. But in the pres
communication, as was mentioned above, we are intere
exactly in thelarge-time behavior, when the system is a
ready close to the attractor, and we want asingleEE descrip-
tion of the wavy film dynamics. Therefore, in addition to th
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MRD principle, we can use from the very beginning—
order to simplify our derivation—the requirement that t
amplitudeA of the film thickness deviation,A(t)[maxuhu,
be small~for all time!; with

h511h, ~10!

we have

maxuh~y,z,t !u5A!1. ~11!

@Note thatA can depend upon time; in such cases, we
that the parameter is alocal parameter, in contrast to th
time-independent ‘‘global’’ basic parametersu, R, andW.#
However, unlike the conventional derivations, we do n
have to postulate that the characteristic length scales in
film plane are large~the long-wave assumption!; rather, this
will follow from the MRD principle.

B. Nusselt’s solution

The above-mentioned Nusselt solution~of the NS prob-
lem!, which is steady and uniform along the film~i.e., in the
streamwise and spanwise directions!, is as follows. The di-
mensionless Nusselt streamwise velocitywN is

wN~x!52x2x2. ~12!

This clearly satisfies thez NS equation

wNxx522, ~13!

with the boundary conditions

wNx50 ~x51! ~14!

and

wN50 ~x50!. ~15!

Similarly, the Nusselt pressure

pN5
2

R
~cotu!~12x! ~16!

is the solution of thex NS equation

pNx52
2

R
cotu, ~17!

with the boundary condition

pN50 ~x51!. ~18!

Finally, the Nusselt normal and spanwise velocities are

uN50 and vN50. ~19!

At sufficiently large Reynolds number, the destabilizi
effect of inertia overcomes the stabilizing influence of gra
ity so that the Nusselt solution loses its stability.~An analysis
later in this section leads toR.(5/4)cotu, the well-known
criterion for instability.! As a result, the film is not uniform
any more and also changes with time.
y

t
he

-

C. First iteration step

We represent the exact velocities and pressure in the f
of sums of Nusselt’s solutions and the deviations from tho

w5wN1w̃0 , u5uN1ũ0 ,

v5vN1 ṽ0 , p5pN1 p̃0 , ~20!

where tildes indicate the deviations from the Nusselt so
tions. First, we consider thez-momentum NS equation. We
substitute the expressions~20! for velocities and pressure
into Eq. ~3!. The resulting~exact! equation can be written in
the form

w̃0xx5Rp̃0z2¹2w̃01Rw̃0t1Rũ0~wN1w̃0!x1Rṽ0w̃0y

1R~wN1w̃02V!w̃0z , ~21!

where ¹25]2/]y21]2/]z2. In accordance with the MRD
principle, as was discussed above, in order to obtain a s
able ODE inx, we have to discard all the terms on the righ
hand side~RHS! of Eq. ~21!, since every one of those con
tains unknown quantities. This yields a simplified equati
for the velocityw̃0, whose solution we denote byw0:

w0xx50. ~22!

We call w̃1 the error in the approximation ofw̃0 by w0:

w̃05w01w̃1 . ~23!

It is clear@see Eqs.~10! and~11!# that the characteristicx
length scaleX is of OM of 1 (X;1), i.e. ~since ]/]x
;1/X),

]

]x
;1. ~24!

We denote byY andZ the characteristic length scales in th
spanwise and streamwise directions respectively, so tha

]

]y
;

1

Y
~25!

and

]

]z
;

1

Z
. ~26!

Similarly, denoting byT the characteristic time scale, w
have

]

]t
;

1

T
. ~27!

Also, clearly,]2/]x2;1, ]2/]z2;1/Z2, ]/]y2;1/Y2, etc.
The characteristic magnitude of each of the neglec

terms on the RHS of Eq.~21!—estimated by replacingw̃0
with w0, etc.—should be smaller than that of the term on
left-hand side,w0xx : w0 /Z2!w0 /X2 and w0 /Y2!w0 /X2.
Hence, we have the following restrictions on the~instanta-
neous! length scales for the validity of our theory:
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1

Y2
!1 ~28!

and

1

Z2
!1. ~29!

Thus, as a consequence of our derivability requirement,
have obtained the longwave conditions, which are ratherpos-
tulated in the conventional ‘‘lubrication’’ or ‘‘long-wave’’
derivations.

Similarly, using Eqs.~26! and~27!, the conditions that the
advective inertial term containingw0, that is the term
RVw0z , and the time-derivative termRw0t , be both smaller
thanw0xx , lead to the following requirements on the para
eters:

R

Z
!1 ~30!

and

R

T
!1. ~31!

Henceforth, we confine our consideration to the film config
rations which satisfy the conditions~28!–~31!. Note that
since the local parametersA, Z, Y, and T can change with
time, they may cease to satisfy the validity conditions@such
as Eq. ~11! and Eqs.~28!–~31!# at a certain stage of th
evolution. In such cases, clearly, the single EE descrip
would be valid only for a limited time that these~and some
other, additional conditions appearing in Appendix A! still
hold. Later, we will determine domains in the space of glo
parameters for which such a violation of VCs nev
happens—so that the single EE approximation is valid g
bally rather than merely locally in time.

The boundary condition onw̃0, at x5h, given by the
tangential-stress balance equation~7!, is written in the form

w̃0x52wNx2ũ0z1@2~w̃0z2ũ0x!hz1~ ṽ0z1w̃0y!hy

1~ ũ0y1 ṽ0x!hyhz#~12hy
2!21 ~x5h!. ~32!

According to the MRD principle, we have to drop all th
terms containing the unknown quantities@those denoted by
letters with tilde# on the RHS. Also, using the smallness
the surface deviation~11!, we will everywhere transfer the
boundary conditions from the true boundaryx5h to a con-
venient ‘‘boundary’’ x51 by expanding all quantities in
Taylor series aroundx51 ~cf. Ref. @24#!, such as

w̃0x~x5h!. ~33!

Noting thatwNx(x51)50, we have the simplified boundar
condition ~for the approximation w0 of the exact quantity
w̃0):

w0x52wNxxh52h ~x51!. ~34!
e

-

-

n

l
r
-

Finally, the no-slip condition requires

w050 ~x50!. ~35!

The solution of Eq.~22! with the boundary conditions~34!
and ~35! is clearly

w052hx. ~36!

Note that from Eqs.~12! and ~36!,

wNx1w0x50 ~x5h!, ~37!

which we will use below. We also observe that

w0;A~!wN;1!. ~38!

Next, consider the incompressibility equation@see Eq.
~4!# in the form

ũ0x52 ṽ0y2w0z2w̃1z . ~39!

~Note thatwN does not make any contribution to this equ
tion, sincewN does not depend onz.! Dropping the terms
with unknownsṽ0 and w̃1 on the RHS, we obtain an equa
tion for the approximationu0:

u0x52w0z522xhz . ~40!

The no-slip BC~5! requires

u050 ~x50!, ~41!

and one readily obtains the solution

u052x2hz . ~42!

We note that

u0;
A

Z
!1. ~43!

We denote the deviation of the exact solutionũ0 from the
approximationu0 by ũ1, so that

ũ05u01ũ1 . ~44!

The (x-momentum! NS equation for the deviation of pres
sure from the Nusselt solutionpN is

p̃0x5
1

R
~u0xx1u0yy1u0zz!1

1

R
~ ũ1xx1ũ1yy1ũ1zz!

2~u01ũ1! t2~u01ũ1!~u01ũ1!x2 ṽ0~u01ũ1!y

2~wN1w01w̃12V!~u01ũ1!z ~45!

@where we have used Eq.~17!#. In this equation, we have to
drop the terms containing the unknownsṽ0 , w̃1, or ũ1. Next,
it is easy to show that theu0xx term@which is;u0 due to Eq.
~24!# on the RHS is much larger than the other term
Namely, u0yy;u0 /Y2!u0;u0xx due to Eq.~28! and u0zz
;u0 /Z2!u0;u0xx due to Eq. ~29!. Similarly, Ru0t
;(R/T)u0!u0;u0xx by making use of Eq.~31!, and
R(wN1w02V)u0z;Ru0z;(R/Z)u0!u0;u0xx due to Eq.
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~30!. Finally, u0u0x!u0x;u0xx , sinceu0!1 @see Eq.~43!#.
Thus the simplified equation~for the approximation p0) is

p0x5
1

R
u0xx52

2

R
hz . ~46!

The BC atx5h @see the normal-stress balance condition,
~8!# is

p̃052pN1
2

R
$~u01ũ1!x1 ṽ0yhy

21~w01w̃1!zhz
2

2@~u01ũ1!y1 ṽ0x#hy1@ ṽ0z1~w01w̃1!y#hyhz

2@~u01ũ1!z1w̃1x#hz%~11hy
21hz

2!21

2s@hyy~11hz
2!1hzz~11hy

2!22hyhzhyz#

3~11hy
21hz

2!23/2 ~x5h! ~47!

@where we have used Eq.~37! to eliminatewNx andw0x]. We
have to drop those terms containingṽ0 , w̃1, or ũ1. In addi-
tion, a number of known terms are estimated to be sma
than the term with u0x . Namely, by using the
estimates ofw0 and u0 @Eqs. ~38! and ~43!#, w0yhyhz

;(A/Z)(A/Y)2!A/Z;u0;u0x . Similarly, w0zhz
2;(A/Z)

3(A2/Z2)!u0x . Also, u0yhy;u0A/Y2!u0x and u0zhz
;u0A/Z2!u0x . Finally, one can see that each of the oth
known nonlinear terms can be neglected sincehz

2;A2/Z2

!1, hy
2;A2/Y2!1, andhyhzhyz;A3/(Y2Z2)!1. We also

note that the entire Taylor expansion forpN(x511h) con-
sists of just one term,

pN~h!5pNx~1!h. ~48!

With the known expressions forpN , w0, andu0 ~see above!,
and using Taylor series aboutx51, truncated to the firs
nonzero term, for all the quantities, one obtains the BC

p052pNxh1
2

R
u0x2s¹2h

5
2

R
~cotu!h2

4

R
hz2s¹2h ~x51!. ~49!

The solution of Eq.~46! with the boundary condition~49! is

Rp052~cotu!h22hz~11x!22W¹2h. ~50!

We observe that

Rp0;maxS cotu,
1

Z
,
W

Z2
,

W

Y2D A. ~51!

As usual, we callp̃1 the difference betweenp̃0 and its ap-
proximationp0:

p̃05p01 p̃1 . ~52!

Finally, consider they NS equation,
.

er

r

ṽ0xx5R~p01 p̃1!y2¹2ṽ01Rṽ0t1R~u01ũ1!ṽ0x

1Rṽ0ṽ0y1R~wN1w01w̃12V!ṽ0z . ~53!

Dropping the unknown terms on the RHS, we obtain t
simplified equation:

v0xx5Rp0y52~cotu!hy22~11x!hyz22W¹2hy ,
~54!

where we have used the expression~50! for p0 in terms ofh
to get the RHS in the explicit form.

The BC onṽ0, at x5h, is @see Eq.~6!#

ṽ0x52~u01ũ1!y1$2@ ṽ0y2~u01ũ1!x#hy

1@~u01ũ1!z1w̃1x#hyhz

1@ ṽ0z1~w01w̃1!y#hz%~12hy
2!21 ~x5h!,

~55!

where we have again used Eq.~37! to eliminatewNx1w0x .
Omitting the terms with tildes and performing the, by no
familiar estimates of the known terms on the RHS, we s
that the termu0y is larger than any other term, so that th
simplified BC atx51 is

v0x52u0y5hzy ~x51!, ~56!

where the expression~42! for u0 has been used. Finally, th
no-slip condition

v050 ~x50! ~57!

is to be satisfied. The solution of Eq.~54! with the BCs~56!
and ~57!—as can be readily checked by dire
substitution—is

v05~cotuhy2W¹2hy!~x222x!2hzyS x3

3
1x224xD .

~58!

This yields the following estimate forv0:

v0;maxFcotu

Y
,

W

Y3
,

W

YZ2
,

1

YZGA. ~59!

As usual,

ṽ05v01 ṽ1 . ~60!

Substituting Eq.~60! into Eq. ~39! we observe that, in
obtaining the simplified equation~40! for u0x , we have in
fact discardedv0y . This requires

v0y;
v0

Y
!u0x;u0 ~61!

~which will be used below!. By using here the estimates~43!
for u0 and ~59! for v0, we arrive at the VCs
max@Zcotu/Y2,WZ/Y4,W/(Y2Z)#!1. These are a subset of th
complete set of~instantaneous! VCs obtained in Appendix A
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@see Eq.~A10!#. It is straightforward to verify that each dis
carded term in every step of our procedure is small a
consequence of those VCs.

The kinematic condition@Eq. ~9!# at x5h becomes

h t1~v01 ṽ1!hy1~wN1w01w̃12V!hz5u01ũ1 .
~62!

Dropping the unknown terms with tildes and the smal
termsv0hy;(v0 /Y)h!u0 @see Eq.~61!# and w0hz;A2/Z
!u0, we have

h t0
1~wN2V!hz5u0 , ~63!

where we have introduced the ‘‘fast’’ timet0, such that] t
5] t0

1] t1
'] t0

. Using the Taylor expansions forwN andu0,

we obtain, atx51,

h t0
1~22V!hz50. ~64!

ChoosingV52, we can eliminate the fast-time undulatio
~which are clearly due to the uniform translation of the wa
with no change in its shape!:

h t0
50. ~65!

Thus, the leading approximation determines the velocity o
reference frame in which film thickness does not change
the fast time scale. However, it will change with the slow
time t1. In order to obtain this slower-time evolution of th
film thickness, one needs to consider the next approxima
for the velocities and pressure. From now on, we fix

V52. ~66!

Then, in view of Eq.~65!, ] t5] t1
.

D. Second iteration

We now proceed to consider the ‘‘corrections’’w̃1 , ũ1 ,
p̃1, and ṽ1 for the velocities and pressure. By substituting

w̃05w01w̃1 , ũ05u01ũ1 ,

ṽ05v01 ṽ1 , p̃05p01 p̃1 ~67!

into the z NS equation~21!, and taking into accountw0xx
50 ~22!, we have the exact equation

w̃1xx52w0xx1Rp0z2¹2w01Rw0t1Ru0~wN1w0!x

1Rv0w0y1R~wN1w022!w0z

1@terms containingw̃1, ũ1, ṽ1, or p̃1]. ~68!

Performing our standard simplification procedure, i.e., d
carding the unknown terms~containing tildes! and small
terms, and also taking into account thatw0!wN @see Eq.
~38!# andv0y!u0 @see Eq.~61!#, the simplified equation for
the approximationw1 is
a

r

,

a
n

r

n

-

w1xx5Rp0z2¹2w01Ru0wNx1RwNw0z22Rw0z1Rw0t

52~cotuhz2W¹2hz!22~x11!hzz

22x¹2h1~2x224x!Rhz12xRh t , ~69!

where we have used the known expressions~in terms of sur-
face deviationh; see the preceding section! for the first-
iteration approximationsp0 , w0, and u0. @For analogous
equations of the general,nth, iteration step, see Appendix C
of Ref. @25# ~the present paper extended by two appendic
Appendix B and Appendix C!.#

The BC onw̃1, at x5h, comes from Eq.~7!:

w̃1x52u0z12w0zhz22u0xhz1w0yhy1v0zhy

1~u0y1v0x!hyhz

1@terms containingw̃1, ũ1, ṽ1, or p̃1] ~x5h!,

~70!

where we have taken into account Eq.~37!. Continuing to
use the simplification procedure established in the previ
section, we arrive at the boundary condition

w1x52u0z5hzz ~x51!. ~71!

All other terms on the RHS of Eq.~70! are readily estimated
in our usual way to be smaller thanu0z @Eq. ~61! is useful in
estimating terms containingv]. The no-slip condition is

w150 ~x50!. ~72!

The solution of the problem~69!, ~71!, and~72! is

w15~cotuhz2W¹2hz!~x222x!

1S x4

6
2

2

3
x31

4

3
xDRhz1S 5x2

2

3
x32x2Dhzz

1S x2
x3

3 Dhyy1S x3

3
2xDRh t , ~73!

which can be verified by direct substitution into the proble
equations. Note that all the terms ofw1 are estimated to be
quadratic in the local parameters~A10!; one can show as a
generalization~see Appendix C of Ref.@25#! thatwn is of the
power (n11), and similarly forun , vn , andpn .

Taking into accountu0x52w0z @see Eq.~40!#, the in-
compressibility condition yields the equation forũ1,

ũ1x52w1z2w̃2z2v0y2 ṽ1y , ~74!

where we have expressedw̃1 asw̃15w11w̃2. Dropping the
unknown terms, we obtain an equation for the approximat
u1:

u1x52w1z2v0y

52~x222x!~cotu¹2h2W¹4h!

2S x4

6
2

2

3
x31

4

3
xDRhzz

2S 5x2
2

3
x32x2D¹2hz2S x3

3
2xDRh tz ~75!
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with the BC

u150 ~x50!. ~76!

It is easy to verify that

u15S x3

3
2x2D @W¹4h2 cotu¹2h#2S x5

30
2

x4

6
1

2

3
x2DRhzz

1S x4

6
1

x3

3
2

5

2
x2D¹2hz2S x4

12
2

x2

2 DRh tz ~77!

is the solution. We note that the complete set of VCs~A10!
obtained in Appendix A guarantees that all the terms d
carded in obtaining solvable ODEs forw1 andu1 are small
in comparison with~the biggest of! those terms that are re
tained.

At this point, we could proceed to solve thex NS andy

NS equations for the pressure and velocity correctionsp̃1

and ṽ1, respectively. However, these corrections are
needed for obtaining the second-iteration EE.~One only
needs the pressure and velocity corrections for thelater it-
eration stages. These corrections are calculated in Appe
B of Ref. @25#.!

IV. THE DISPERSIVE-DISSIPATIVE
EVOLUTION EQUATION

The~exact! kinematic condition~9! at x5h can be written
in the form

h t1~v01 ṽ1!hy1~wN1w01w11w̃222!hz

5u01u11ũ2 ~x511h!, ~78!

where we have usedV52 ~66!. Dropping the terms contain
ing unknown velocities~those with tildes!, and using the
Taylor series to relate the velocity components atx5h to
those atx51, we have

h t1~wNxh1w0!hz5u0xh1u1 ~x51!. ~79!

In Eq. ~79!, we have dropped the termsv0hy and w1hz as
they are smaller thanu1 @see Eq.~75!#. Also, recall that
wNx(x51)50 @see Eq.~12!#. Using the expressions~36!,
~42!, and~77! for w0 , u0, andu1, we obtain

Fh2
5

12
RhzG

t

14hhz1
2

3
dhzz

2
2

3
cotuhyy1

2

3
W¹4h12¹2hz50 ~80!

where, by definition,

d[
4

5
R2 cotu. ~81!

However, the term}Rh tz;(R/Z)h t!h t , since R/Z!1
@see Eq.~A10!#. Dropping this small term, we have

h t14hhz1
2

3
dhzz2

2

3
cotuhyy1

2

3
W¹4h12¹2hz50.

~82!
-

t

ix

Simple linear-stability analysis can reveal the dynami
role of some terms here. Assuming an infinitesimally sm
disturbance in the form of a normal mode,h} exp(st
2iwt)expi(jy1kz), it readily follows from the linearized ver-
sion of Eq.~82! that

s5
2

3
@dk22~cotu! j 22W~k412 j 2k21 j 4!# ~83!

and

v522k~k21 j 2!. ~84!

Heres is the growth~or decay! rate for the disturbance an
so the third, fourth, and fifth terms in Eq.~82!, which give
rise to growth~or decay!, are dissipative@considering the
destabilizing term~the one withd) as anegativedissipation#.
In contrast, the last term in Eq.~82! only makes a contribu-
tion to the~real! frequencyv, rather than to the growth rat
s, i.e., it does not lead to growth or decay of disturbanc
Thus, this~third-derivative! term isdispersive.

Clearly, for instability to develop~i.e., fors.0), we need

d.0, ~85!

a condition we assume fulfilled from now on. This yields t
so-called critical valueRc of the Reynolds number,Rc
5(4/5)cotu, at which the instability sets in.

One can see from the above derivation of the dispers
dissipative EE~82! that the destabilizing~third! term origi-
nates from the inertia terms of the NS equations. The~stabi-
lizing! fourth and fifth terms are due, respectively,
hydrostatic and capillary~i.e., surface-tension! parts of the
pressure. Finally, the last, odd-derivative term is due to
viscous part of the pressure. Such a purelydispersiveterm
also appeared in the EE obtained by Topper and Kawah
@16# for an almost vertical plane; they used the small angle
the plane with the vertical as their~single! perturbation pa-
rameter~see also the discussion in the Introduction of t
present paper!. Our derivation shows that assumption to
unnecessary. In particular, for the vertical film cotu50, and
Eq. ~ 82! becomes

h t14hhz1
8

15
Rhzz1

2

3
W¹4h12¹2hz50. ~86!

Although an equation of this structure~but with arbitrary
coefficients! was postulated as a model equation in Ref.@26#,
it cannot be obtained from the derivation of Topper a
Kawahara@16#; since their small parameter is proportional
cotu, it becomes zero for the vertical case, and the Reyno
number~also proportional to the small parameter in that
derivation! vanishes, which, clearly, cannot correspond
any flow at all.

The ~infinite-dimensional! dynamical system governed b
the dissipative equation ~82! essentially ‘‘forgets’’ initial
conditions as it evolves towards an attractor. There may
fluctuations on the attractor, but there is no systema
change in time. Clearly, then the amplitude-decreasing,
bilizing term must balance the destabilizing one~the latter
tends to increase the deviation amplitude!. So the two dissi-
pative terms are necessarily of the same order of magni
on the attractor.
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As to the magnitude of the dispersive term relative to t
of the dissipative terms, there can occur, depending on lo
tion in the parameter space, each of the following three p
sibilities: ~i! these terms are of the sameOM , ~ii ! the disper-
sive term is small~and then the amplitude is determined
the balance of the nonlinear term with the dissipative term!,
and ~iii ! the dissipative terms are small~and the nonlinear
term balances the dispersive one!. In the first case, continu
ing the iteration process would lead to small corrections
the terms which cannot significantly change the evolution
the second case, the small dispersive term can be om
with a negligible effect, so the corrections would be ag
immaterial.

But in the third case, when dissipation is small, the si
ation is very different. Discarding the dissipative terms lea
to a 2D Korteweg–deVries~KdV! equation which was simu
lated numerically in Ref.@27#. The KdV equation is purely
dispersive and never forgets the initial conditions. It ha
one-parameter family of axisymmetric solutions which a
traveling solitons, similar to the well-known 1D KdV cas
Depending on the initial state, there may be solitons of d
ferent length scales~and therefore moving with differen
speeds! in the final state. However, if the small dissipativ
terms are present, they will slowly change the initial solit
of an arbitrary length scale. It will evolve along the solito
family until the length scale is attained which provides f
the balance between the two dissipative terms~this effect
was first studied for the 1D case in Ref.@28#; see also Refs
@29–31#!. Therefore, the dissipative terms, even whensmall,
are important; they determine the length scale of the s
tion.

However, only thelargest-magnitudeterms are guaran
teed to be correct in the above beginning-iteration derivat
as for the smaller terms, further iterations might yield s
nificant corrections to them. We consider this question~of
higher iterations and corrections to small dissipative term!
in the next section. It turns out~perhaps, surprisingly! that
such corrections can be importantlocally under some para
metric conditions, but that no~single! corrected EE can ap
proximate the evolution for all time. Equation~82! is thus the
most general of those EEs that can be validglobally in
time—under appropriate parametric restrictions, which c
be completely determined only with the analysis of high
iterations of the NS problem, as is done in the next sect
For the rest of this section, we continue the consideration
the GEE~82!.

From the conditiond.0 @Eq. ~85!#, it follows that

R.
5

4
cotu.cotu. ~87!

From Eqs.~82! and ~83!, it is clear that, in order for insta
bility to develop, we needdhzz.(cotu)hyy. Using they and
z length scales, this yields,Y2/Z2.(cotu)/d. Noting that ei-
ther d!R;Rc; cotu or d;R, we see thatY@Z or Y;Z,
except perhaps forR@cotu. For simplicity, we assume tha
Z<Y, which seems to be the case in all experiments
know about. Then

L[min~Z,Y!5Z. ~88!

With this and the condition~87!, the VCs~A15! reduce to
t
a-
s-

o
n
ed
n

-
s

a

-

-

;
-

n
r
n.
of

e

maxFA,
1

L2
,
R

L
,
W

L3G!1. ~89!

These are conditions ofinstantaneousvalidity; they involve
the local~i.e., instantaneous! parametersA(t) andL(t).

As was discussed above, due to the dissipativeness o
EE ~82!, the system evolves towards an attractor, and in
asymptotic limit of large times we haveA(t)5const[Aa
and L(t)5const[La . Since ~similar to Refs.@32,17#! the
destabilizing inertia term should be of the sameOM as the
stabilizing, capillary one, i.e.,dhzz(;dA/La

2);W¹4h
(;WA/La

4), the ~dimensionless! characteristic length scal
at large times La can be taken to be

La5S W

d D 1/2

. ~90!

Similarly, the asymptotic magnitude of the characteristic a
plitude Aa is determined by the balance between the non
ear ‘‘advective’’ term and either the dispersive term or t
capillary one~whichever is larger!: Aa5max(W/La

3,1/La
2).

Using these asymptotic values of parameters, the condit
~89! can be written as max(W/La

3 ,R/La,1/La
2)!1. Noting

that, in view of Eq.~90!, W/La
35d/La and @see Eq.~81!# R

5(5/4)(d1cotu).d, so thatW/La
3,R/La , we can simplify

the VC to max(R/La ,La
22)!1; in terms of the basic param

eters,

a[
1

La
2

5
d

W
!1, b[

R

La
5RS d

WD 1/2

!1. ~91!

In the next section, it is shown that we also need

g[
max~R,R3!

W
!1 ~92!

~otherwise, the dissipative terms contributed by higher ite
tions can become significant, and the evolution cannot
all-time describable by a single EE!. All three parameters,a,
b, andg, are small if~recall thatd,R)

aR[
R

W
5

r̄ḡ2h̄0
5 sin2 u

2s̄n̄2
!1 ~93!

and

bR[
R3/2

W1/2
5S r̄h̄0

11

8s̄
D 1/2S ḡ2 sin2 u

n̄3 D !1. ~94!

So, if we are in the domain of the space of basic parame
which satisfies the condition max(aR,bR)!1 @or a bit more
general, but less simple condition max(a,b,g)!1], then Eq.
~82! is goodfor all time @provided that the initial amplitude
and length scale satisfy the conditions~89!#. Therefore, we
call such conditions the ‘‘global’’ VCs.

We can transform the GEE~82! to a ‘‘canonical’’ form—
which contains only two ‘‘tunable’’ constants—by rescalin
the variables with appropriate units:

h5Nh̃, z5Laz̃,
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y5Laỹ, t5Tat̃ , ~95!

whereN51/(2La
2) andTa5La

3/2. Dropping the tildes in the
notations of variables, the resulting canonical EE is

h t1hhz2khyy1¹2hz1e~hzz1¹4h!50. ~96!

The control parameters in this equation are

e5
1

3
AWd ~97!

and

k5
La cotu

3
5

1

3
AW

d
cotu. ~98!

For the case ofk50 ~e.g., flow down a vertical wall!, Eq.
~96! becomes essentially the model equation postulated
numerically studied in Ref.@26#. If, in addition,«5k50, we
have the 2D KdV equation@33#, whose 1D (]y50) version

FIG. 1. Evolution of energy illustrating that the solutions of E
~96! remain bounded.
ng

r i
e

ai
nd

is the usual KdV equation. Whenk50 but e→` ~so that,
after an appropriate rescaling, the dispersive term disapp
from the equation!, Eq. ~96! becomes the one obtained b
Nepomnyashchy@34#, whose 1D version is the Kuramoto
Sivashinsky equation@35,36#. All of these equations are thu
limiting cases of EE~96!.

Numerical simulations@22# of this equation have shown
that its solutions remain bounded for all time~which prop-
erty always is implicitlyassumedin global-validity consid-
erations, and therefore must be directly verifiedafter the EE
has been obtained!. For example, Fig. 1 shows the evolutio
of the surface deviation ‘‘energy’’*h2 dy dz from an initial
small-amplitude (h;1022) ‘‘white-noise’’ condition to a
statistically steady state~for k50 and e51/50). Detailed
numerical studies of Eq.~96! will be presented elsewhere.

V. ADDITIONAL DISSIPATIVE TERMS

In this section, we examine the implications of the ad
tional dissipative terms arising from further iterations. W
take into account explicitly all the linear dissipative and d
persive terms with derivatives of order four or less by goi
through the iterative process twice. We also estimate the
fect of dissipative terms with derivatives of order six or mo
on the EE.

We note that, for obtaining the evolution equation, w
need only the successive iterates of the normal velocityu.
This is because the nonlinear terms involvingwhz andvhy
in the kinematic condition make smaller contributions to t
EE. ~Indeedu;wz1vy and, e.g.,wzh generates the sam
terms as thewz part of u, but with the extra small factorh.!
We have found the next two iterative corrections for t
normal velocity,u2 andu3, Eqs.~B22! and~B37! in Appen-
dix B of Ref. @25#. @We needu3 ~in addition tou2) because
its dissipative terms are not guaranteed to be much sm
than those ofu2. However, the dissipative terms ofu4 are
much smaller than those ofu2, so we do not have to conside
u4.# Using these in the kinematic condition~9!, we obtain
@see Appendix B of Ref.@25# for details#
h t5F 5

12
Rhz2

4

15
R cotu¹2h1

295

672
R2hzzG

t

24hhz2
2

3
dhzz1

2

3
cotuhyy22¹2hz2

2

3
W¹4h

2F23

15
R22 cotuG~hhz!z1

5

14
R cotu¹2hz2

2

7
R2hzzz

1
6

5
cotu¹4h2

331

168
R¹2hzz2

1 241 483

8 108 100
R3hzzzz1

477 523

2 494 800
R2cotu¹2hzz. ~99!
he

d 3

it
ely
We get rid of time derivatives on the RHS by twice iterati
this equation, substituting~for each time derivative on the
RHS! the RHS~99! of Eq. ~99! itself; the remaining time
derivatives on the final RHS are omitted because furthe
erations would only lead to derivatives of an order high
than 4, with small resulting contributions.@In fact, in the first
iteration, when substituting into the~mixed-derivative! terms
with the second spatial derivatives, it is enough to ret
t-
r

n

from the RHS~99! only the terms withno time derivatives,
and with space-derivatives of the order of 2 only. As for t
term with the first spatial derivative,}h tz , the terms without
time derivatives and with space derivatives of orders 2 an
are substituted into it, and also the term (5/12)Rh tz itself,
with the result (5/12)2R2h tzz. In the second iteration, it is
sufficient to only substitute into the latter term, and—since
already contains two spatial differentiations—only the pur
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spatial second-derivative terms should be substituted into#
As a result, we obtain the following equation:

h t14hhz1
2

3
dhzz2

2

3
cotuhyy

12¹2hz1
40

63
Rdhzzz2

40

63
R cotuhzyy

1
2

3
W¹4h2

2

3
cotu¹4h

1
157

56
R¹2hzz1

8

45
R cot2 u¹4h

1
1 213 952

2 027 025
R3hzzzz2

138 904

155 925
R2 cotu¹2hzz

1S 16

5
R22 cotu D ~hhz!z50. ~100!

The 1D (]y50) limit of this equation coincides with the
small-amplitude limit of the EE obtained, with the same n
merical coefficients, in Ref.@14#, but our 2D version is new
@We remark that there are several mistakes in the prese
tion of steps leading to the final equation, Eq.~27! in Ref.
@14#. However, Eq.~27! itself appears to be correct. Th
same numerical coefficients appeared in an even earlier
per @11# in a linearized 1D context.# The ~2D! terms with
derivatives of order 3 or less agree with Ref.@15#, and those
plus the surface-tension~W! term—with Ref.@37#. However,
note that some terms of~100! are always negligible. Fo
example, the two dispersive third-derivative terms contain
R are clearly smaller than the corresponding second-o
dissipative terms~because of the instantaneous VCsR/L
!1 and cotu/L!1), and therefore are negligible in all case

As was mentioned above, since we are only intereste
situations where persistent nonlinear waves are presend
.0, we have eitherd;R or d!R @but not d@R; see Eq.
~81!#. Whend;R, the additional fourth-derivative terms i
Eq. ~82! are each smaller than the destabilizing seco
derivative term ~because ofR/L!1 and/or 1/L2!1). If
max(R,R3)!W @see Eq.~92!#, those terms are much smalle
than the stabilizingcapillary term, and we return to the GEE
~82! with global VCs~93! and ~94! ~this holds as well even
for d!R). But if W is not large enough, so that Eq.~92! is
violated and the capillary fourth-derivative term is mu
smaller than ~at least! one of the noncapillary fourth
derivative members, then the destabilizing term cannot
balanced, and the EE leads to the unlimited growth of a
plitude. Thus, clearly, at such parameter-space locations
EE ~100! can be valid locally, i.e., for a limited time only
but it is not globally good.

Consider now~for the rest of this section! the comple-
mentary cased!R ~so R.Rc), and with W sufficiently
small, so that the condition max(R,R3)!W is violated. We
have obtained, except for numerical coefficients, all of
essential terms~which turn out to be linear; see the end
Appendix C of Ref.@25#!. Including these terms in Eq.~100!,
the EE can be written in the general form
t.

-

ta-

a-

g
er

.
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-

e
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he

e

h t14hhz1
2

3
dhzz2

8

15
Rchyy12hzzz1

2

3
Whzzzz

1
8

5
Rc~hhz!z1F2581

1400
Rc2

32

3 378 375
Rc

3Ghzzzz

1@sum of terms of typeRc
2k11h (2l )#50. ~101!

Here the superscript onh, enclosed in parentheses, refers
the order of the spatial derivative;l .k>0; k50,1,2, . . . ,l
5(k11),(k12), . . . ; andevery (k1 l ) is odd. In Eq.~101!,
we have used the leading Taylor-series approximation p
ting R5Rc ~recall also cotu'4Rc/5). Also, Y@Z ~as a con-
sequence ofdhzz>Rchyy , which is required for instability
to develop!. Furthermore, we have not included addition
nonlinear or dispersive terms in Eq.~101!; the dissipative
nonlinear terms can be shown~see Appendix C of Ref.@25#!
to be smaller than the leading nonlinear dissipative te
}R(hhz)z , and all the dispersive terms are smaller than
linear one¹2hz .

Normally, the coefficients of the terms areOM(1). How-
ever, sometimes a coefficient is!1 because of an accidenta
near cancellation of terms as, e.g., is the case for the t
}Rc

3hzzzz in Eq. ~101!. Then we say the term is ‘‘degene
ate.’’ Comparing the additional dissipative terms with t
term }Rc

3hzzzz and taking into account the instantaneo
VCs R/L!1 and 1/L2!1, the only terms which may not b
negligible are those of the structureRc

2n21h (2n) (n
52,3, . . . ) ~even those could have been neglected in co
parison with the term}Rc

3hzzzzwere the latter nondegene
ate!. Hence, the EE can be simplified:

h t14hhz1
2

3
dhzz2

8

15
Rchyy12hzzz

1
8

5
Rc~hhz!z1F2581

1400
Rc2

32

3 378 375
Rc

3Ghzzzz

1 (
n53

`

cnRc
2n21h (2n)50, ~102!

where cn are numerical coefficients. Can this equation
valid for all time? For this to be the case, the destabilizi
term (2/3)dhzz has to be balanced by a stabilizing one—
the term}Rchzzzz ~the other, degenerate fourth-derivativ
term is clearly destabilizing! or by the first nondegenerat
and stabilizing higher-derivative term of Eq.~102!, which-
ever term is dominant.

Suppose first that the fourth-derivative term is the dom
nant stabilizing one. Then Eq.~102! becomes

h t14hhz1
2

3
dhzz2

8

15
Rchyy12hzzz

1
8

5
Rc~hhz!z1

2581

1400
Rchzzzz50. ~103!

The balance of the destabilizing termdhzz with the stabiliz-
ing termRhzzzzyields the length scaleL;Rc /d . Compar-
ing the dissipative term with the dispersive term, we ha
Rchzzzz/hzzz;Rc /L!1; the dispersive term is always dom
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nant. Therefore, it is the dispersive term which is to bala
the nonlinear one, which yields the characteristic amplitu
;1/L2. Using this, it is easy to see that the nonlinear dis
pative term;Rc(hhz)z is exactlyOM of the linear dissipa-
tive terms; therefore, the nonlinear term plays a signific
role. It is destabilizing, and numerical simulations indica
that the solutions of Eq.~103! blow up @see Fig. 2, which
shows the blowup of energy~in contrast to Fig. 1! governed
by the equation rescaled to the canonical form similar to
~96!,

h t1hhz1hzzz2khyy

1«@hzz1hzzzz1~1120/2581!~hhz!z#50,

~104!

with k50 and«51; we have observed similar blowup b
havior with all the values of« we tested in the range from
1022 to 102]. The thickness of the real film, of course,
bounded uniformly for all time. Hence, Eq.~103! ~which can
be good for a limited time! is not globally valid. Physically,
we believe that the growth of amplitude will be arrested
viscosity after small length scales develop, which would v
late the smallR/L VC for the single EE description. So th
EE ~103! cannot be valid for large times.

The hypothetical case when a higher-derivative te
}Rc

2n21h (2n) is the dominant stabilizing one remains to
considered.@In particular, this implies that 3<n5m ~say!,
cn!1 for n,m, cm;1, and cm has an appropriate sign
cm.0 if m is even andcm,0 if m is odd.# We do not
believe this actually happens; such terms are traced bac
be due to the inertia terms in the momentum NS equatio
the same inertia terms which give the destabilizing seco
derivative term of Eq.~102!, and it seems unlikely that th
same physical cause can be responsible for both stabiliza
and destabilization. Therefore, we believe the first nondeg
erate term will turn out to bedestabilizing.

Based on the~linear! studies@38# of the Orr-Sommerfeld
equation, we have computed the next coefficient, wh
shows that, albeit stabilizing, the sixth-derivative term
again degenerate: c35216 173 184/1 718 663 821 875'
20.94131025. ~This is also remarkably close to the fourt

FIG. 2. Evolution of energy indicating that the solutions of E
~104! blow up.
e
e
i-

t
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-

to
s,
d-

on
n-

h

derivative coefficient,c2'20.94731025. If further cn were
all degenerate too and of the same order of magnitude,
destabilizing fourth-derivative term would be dominant, a
hence stabilization and all-time valid EE impossible.!.

A special case to consider is when the destabiliz
fourth-derivative term~which is clearly much greater tha
the sixth-derivative one! is nearly cancelled by the stabiliz
ing fourth-derivative termaRch

(4) ~where a[2581/1400).
As the termc3Rc

5h (6) is stabilizing, one@39# can ask whether
there can be an all-time valid EE ifuc3Rc

5h (6)u@uaRc

2c2Rc
3)h (4)u. Our answer to this question is as follows.

this case,aRch
(4);uc2uRc

3h (4)@uc3uRc
5h (6). Since the dis-

persive ~third-derivative! term must dominate the fourth
derivative term aRch

(4), it dominates even stronger th
sixth-derivative termc3Rc

5h (6) @see the discussion following
Eq. ~103!#. As usual, the length scale is determined by
balance between the dominant linear dissipative ter
dhzz;uc3uRc

5h (6)!aRch
(4);Rc(hhz)z @see the argument

following Eq. ~103!#. Thus, the destabilizing nonlinear term
is the greatest one; there is no other term that could serv
a counterbalance. We arrive at the conclusion that the hy
thetical EE with the sixth-derivative term cannot be valid f
all time.

We have not attempted to determine the next coefficie
c4, because of the large volume of calculations that would
required. Based on what we have said above, we expec
eighth-derivative term to be nondegenerate and destabiliz
and then no single EE can be globally valid under the c
cumstances. It follows that the GEE~82! is the most genera
one. The validity conditionW@Rc

3 ~which would be suffi-
cient even ifc2 were nondegenerate! can be relaxed a bit; it
is enough to require that the capillary term dominates
~presumably nondegenerate! eighth-derivative one,W/L3

@Rc
7/L8. ~With L2;W/d @see Eq. ~90!#, we get

W7/2/(d5/2Rc
7)@1.) The EE~102! is valid locally only, under

the instantaneous VCs~89!.
If, however, the first nondegenerate term}Rc

2n21h (2n)

turned out to be stabilizing, the EE~102! would have a do-
main of global validity, albeit a very limited one. It i
straightforward to find the corresponding global VCs. I
deed, the balance between this term and the destabili
one,Rc

2m21h (2m);dhzz, yields the length scaleL,

L2m22;
Rc

2m21

d
. ~105!

Using this length scale, the ‘‘modified-R’’ VC takes the form

Rc

L
;S d

Rc
D 1/(2m22)

!1, ~106!

and the small-slope VC becomes

1

L2
;F d

Rc
(2m21)G 1/(m21)

!1. ~107!

The ~relaxed! conditions of dominance areWh (4)

!Rc
2m21h (2m) and Rch

(4)!Rc
2m21h (2m), i.e., W

!Rc
2m21/L2m24 and Rc

2(Rc /L)2m24@1 @which with Eq.
~105! are easy to recast in terms of the global parame
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only#. The ratio of the nonlinear dissipative term
}Rc(hhz)z , to the stabilizing one,}Rc

2m21h (2m), is
A/(Rc /L)2m22, which is required to be small—otherwis
we can have the blowup of solutions, similar to the case w
the term}Rch

(4) being dominant. The comparison of diss
pative term,}Rc

2m21h (2m), to the dispersive term,}hzzz,
shows that the latter can be greater or smaller than the for
depending upon whether Rc

2m21/L2m23!1 or
Rc

2m21/L2m23@1.
WhenRc

2m21/L2m23!1 ~dispersion is large!, the charac-
teristic amplitude, obtained by balancing the termhhz with
the dispersive term, is 1/L2 @hence, the small-amplitude VC
A!1, coincides with Eq. ~107!#. Otherwise, i.e., if
Rc

2m21/L2m23@1, the amplitude is determined by balancin
the term }hhz with the dominant stabilizing term,A
;(Rc /L)2m21. Using the global-parameter estimate of t
length scale@Eq. ~105!#, all of the above conditions ar
readily reduced to certain global VCs~expressed in terms o
global parameters only!; we do not write them here, in view
of the likely nonreality of the imaginary case of dominan
of the term}Rc

2n21h (2n).

VI. SUMMARY

We have considered flow of a liquid film down an in
clined plane. We have posed and studied the following qu
tions: What are the least restrictive parametric conditions
which the wavy film flow can be approximated for all tim
by a single~local! evolution equation, and what~if any! is
the most general form of such an equation?

We have argued that the dissipative-dispersive evolu
equation~82! @which we derived by an iterative perturbatio
method of a multiparametric type# is such a general EE. Any
all-time valid EE derived by a single-parameter technique
necessarily nothing else but essentially the general EE
which some terms have been omitted. Also, the domain
validity of such a ‘‘partial’’ EE is necessarily asubdomainof
the ‘‘umbrella’’ domain of global validity given by Eqs.~93!
and ~94!. @In particular, in such domains the amplitude
waves is necessarily much smaller than the mean film th
ness.#

It is clear that any evolution equation which follows fro
a multiparametric approach~such as the iterative techniqu
we have employed in this paper! can be also obtained with
the conventional SP approach. However, the significant
vantage of the MP derivation is that it covers at once
possible SP derivations of EEs~the number of which is, in
principle, infinite in the SP approach, corresponding to
different choices of the small-parameter powers for the s
tem parameters!. Also, comparing the two derivations o
even aparticular EE, the MP derivation is justifiable fo
much less restrictive domains of the parameter space.

The theory also yields the explicit approximate expr
sions in terms of film thickness for the pressure and com
nents of velocity@Eqs.~50!, ~42!, ~58!, and~36!#, and thus a
complete description of film dynamics.

We have derived an EE~100! containing additional high-
derivative terms which can be essential near the thresho
instability,R'Rc , if the surface tension is sufficiently sma
However, this EE~102! is good for a limited time only and
h
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ll

e
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of

cannot be good for all time.@The conditions of such a loca
~in time! validity are given by Eq.~89!.# Under certain para-
metric conditions, the~numerical! solutions of that EE blow
up due to a nonlinear~quadratic, second-derivative! destabi-
lizing term.

The EE~82! is relatively easy for numerical simulation
of the 3D waves in the inclined film. We have obtained go
agreement with transient states and transitions observe
the physical experiments of Ref.@9#. Under certain paramet
ric conditions for which the dissipative terms of the EE a
small, we observed self-organization~from the initial white-
noise small-amplitude conditions! of unusual highly ordered
patterns of solitonlike structures on the film surface~the pat-
tern consists of two traveling-wave subpatterns which mo
with different velocities!. The studies of the evolution equa
tion ~82! will be published elsewhere~see also Refs.@4,22#!.

A similar analysis leads to analogous single EE theory
a film flowing down a vertical ‘‘fiber.’’ We believe that simi-
lar theories can be useful for a variety of other systems.
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APPENDIX: VALIDITY CONDITIONS

From Eq.~73!, the estimate ofw1, in terms of the basic
parameters and length and amplitude scales, is

w1;maxS 1

Z2
,

1

Y2
,
R

Z
,
cotu

Z
,
R

T
,
W

Z3
,

W

ZY2D A. ~A1!

Estimatingu1 from Eq. ~77!, we have

u1;maxS 1

Z3
,

1

ZY2
,

R

Z2
,
cotu

Z2
,
cotu

Y2
,

R

TZ
,
W

Z4
,

W

Z2Y2
,

W

Y4D A.

~A2!

In obtaining a solvable equation for the boundary condit
on w1x at x51 @Eq. ~71!#, we have dropped the termu1z(x
51). This implies

u1z!w1x ~x51!. ~A3!

Using theOM estimates foru1, Eq. ~A2!, andw1x(x51) ,
Eq. ~71!, the above requirement reduces to

u1z~x51!;maxS 1

Z3
,

1

ZY2
,

R

Z2
,
cotu

Z2
,
cotu

Y2
,

R

TZ
,

W

Z4
,

W

Y2Z2
,

W

Y4D S A

ZD!w1x~x51!;
A

Z2
. ~A4!

This again yields the conditions~28!, ~29!, ~30!, ~31! and, in
addition, the following conditions:

cotu

Z
!1, ~A5!
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S Z

YD S cotu

Y D!1, ~A6!

W

Z3
!1, ~A7!

W

ZY2
!1, ~A8!

and

S Z

YD S W

Y3D !1. ~A9!

These conditions, along with Eqs.~11! and ~28!–~31!, form
the complete set of validity conditions for the present theo
They are sufficient to justify all the simplifications of th
equations. Thus, the complete set of VCs is

maxFA,
1

Z2
,

1

Y2
,
R

Z
,
cotu

Z
,
Z cotu

Y2
,
R

T
,
W

Z3
,

W

Y2Z
,S Z

YDWZ

Y4 G!1.

~A10!

Using these conditions, it is easy to see thatw1!w0 and
u1!u0.

One can estimate theOM of Rp1, by using Eq.~B6! of
Ref. @25# as

Rp1;maxS A

Z
,

1

Z3
,

1

ZY2
,

R

Z2
,
cotu

Z2
,

cotu

Y2
,

R

TZ
,
W

Z4
,

W

Z2Y2
,

W

Y4D A. ~A11!

Using the conditions~A10!, it is easy to show thatRp1 /Z
!Rp0 /Z or p1!p0. By using Eq.~B12! of Ref. @25#, one
can estimate theOM of v1 as
v

lie
.

v1;maxF A

YZ
,

1

YZ3
,

1

ZY3
,

R

YZ2
,
cotu

YZ2
,
cotu

Y3
,

R

TYZ
,

W

YZ4
,

W

Y3Z2
,

W

Y5
,
A cotu

Y
,
AW

YZ2
,
AW

Y3
,
R cotu

ZY
,

RW

YZ3
,
RW

ZY3
,
R cotu

TY
,

RW

TY2Z
,
RW

TY3GA. ~A12!

Using the estimate ofv0 @Eq. ~59!# and the conditions~A10!,
it is easy to see thatv1!v0. The VCs~A10! guarantee that
all the terms involvingw0 , u0 , v0 , p0 , w1 , u1 , v1, andp1
that were dropped in obtaining solvable ODEs for the sa
quantities are small in comparison with the terms that w
retained.

Estimating theOM of various terms in Eq.~82!, and not-
ing thatd!R or d;R, we find that

A

T
;maxFA,

1

Z2
,

1

Y2
,
d

Z
,
cotu

Z
,
Z cotu

Y2
,
W

Z3
,

W

ZY2
,
WZ

Y4 S A

ZD G
~A13!

and, consequently, taking Eq.~A10! into account,

R

T
;maxFA,

1

Z2
,

1

Y2
,
d

Z
,
cotu

Z
,
cotuZ

Y2
,
W

Z3
,
WZ

Y4
,

W

ZY2 S R

ZD G
!1. ~A14!

Hence, the parameterR/T is small as a consequence of th
smallness of other parameters in Eq.~A10!, and thus can be
omitted from there. Also, Eq.~87! yields cotu/Z,R/Z!1, so
that the parameter cotu/Z can be omitted as well. The some
what simplified validity conditions are

maxFA,
1

Z2
,

1

Y2
,
R

Z
,
cotuZ

Y2
,
W

Z3
,

W

Y2Z
,
WZ

Y4 G!1 ~A15!

~which, in turn, significantly simplify @see Eq. ~89!# if
Y>Z).
s.
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