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Wavy film flows down an inclined plane: Perturbation theory and general evolution equation
for the film thickness
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Wavy film flow of incompressible Newtonian fluid down an inclined plane is considered. The question is
posed as to the parametric conditions under which the description of evolution can be approximately reduced
for all time to a single evolution equation for the film thickness. An unconventional perturbation approach
yields the most general evolution equation and least restrictive conditions on its validity. The advantages of
this equation for analytical and numerical studies of three-dimensional waves in inclined films are pointed out.
[S1063-651%99)10610-X]

PACS numbd(s): 47.20.Ft, 47.35ti, 47.20.Ma, 47.20.Gv

[. INTRODUCTION ever, no such system has ever been derived consistently for
an inclined single layer film, the subject of our consideration
Thin liquid layers (“flms” ) flowing along solid in this paper. The same is true for thenlocal i.e., integro-
surfaces—such as inclined planes or vertical cylinders—differential, film-thickness equation§The only known ex-
occur in both natural and man-made environments. Industrisdmple[18] of such a nonlocal EE, as far as film flows are
applications of film flows started as long ago as the 1800soncerned, is an EE for a core-annular flow, and not for an
and have been growing in their scope and importance evenclined film) In any case, in this paper, the nonlocal equa-
since(see, e.g., Ref41,2]). tions are altogether excluded from the consideration; thus,
Accordingly, the studies of film flows, in particular those when we say “the most general EE,” it should be under-
down an inclined plane, have a considerable hist@ge, stood as “the most generédcal EE,” etc.] Although less
e.g., Refs[1,3]). However, the dynamics of nonlinear waves drastic simplifications than a single E&nd therefore having
(typically present in film flowsis still far from being satis- a larger parametric range of validitare known(see, e.g.,
factorily understood(see Refs.[4,5] for the most recent Ref.[5]), so far fully dimensional simulations for sufficiently
progress reviews The nonlinear Navier-Stoke®S) partial ~ extended spatial domains have been carried[4yt0] only
differential equations(PDE9 of this “Kapitza problem”  for the theories hinged on a single evolution equation. Such
couple together several fieldpressure and the components single EE theories of inclined-film flows are the subject of
of velocity), each a function of time and three spatial coor-the present paper.
dinates. Furthermore, the boundary conditi¢BEs) of the Evolution equations for film thickness have been known
problem involve a free boundafthe free surface of the film  since the pioneering work of Benng¥1]. The conventional
whose PDE itself is coupled to the NS equations. The fullperturbation approach to their derivatida.g., Refs.[12—
spatially three-dimensiona{3D) problem is too hard to 15]) used a smalllong-wave parameter, say. In particular,
simulate even with the most powerful modern computers. each of the “global” (“internal,” “basic” ) parameters
Even simpler, 2D computations of wavy films have beenspecifying the problenithe parameters appearing in the di-
undertaken only under the simplifying assumptions of shorimensionless NS equations and the free-surface) Bist be
spatial intervalge.g., Refs[6,7]) and/or time independence ascribed, in such a single-paramei®P technique, a certain
(e.g., Ref[8]). However, 2D flows are frequently unstable to power of € as its order of magnitudeQy,). Therefore, an
3D disturbances, and three dimensionality can be importarartificial dependence is forced on the—intrinsically
for many inclined films(see, e.g., recent experiments in Ref. independent—parameters. This unnecessarily restricts the
[9)). domain of justified validity of the resulting EE. For example,
Therefore, naturally, one looks for more manageaige for the vertical film, there are just two independent param-
proximatedescriptions of wavy-film evolution. Such simpli- eters: the “Reynolds numberR and the “Weber number”
fied theories are possible in certain domains of the space oW. If R is of the order of magnitude of)e? and W~ €°,
parametergfor which, typically, the slopes of the surface thenW~R®2, The set of point&V=R"2 is just a 1D curve
waves are small Of course, the greater simplification has to in the 2D space R,W), while the complete domain for
be paid for by a more limited applicability of the theory. The which the EE is valid is likely to have the same dimension-
greatest simplification is achieved when the problem reduceslity as the parameter spade,{V) itself, that is it should be
to a single evolution PDE approximating the thickness of thea 2D domain.
film. [From the numerical-simulation point of view, the most  Furthermore, each time the powers assigned to the param-
important simplification here is the reduction in the numbereters are altered it is, in principle, necessary to again go
of independent spatial variables, and even a lowerthrough the entire procedure or the SP derivation, and one
dimensionalsystenof equations would have been not much can arrive at a different EE as a result. For example, Topper
more difficult than asingle evolution equationEE). How-  and Kawahar§16] considered two cases of an inclined-film
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flow (such a flow is specified bghreeglobal parameters; in are certain truncations of the GEE. The GEE also has the
addition toR andW, the inclination angled can be indepen- least restrictive domain of validity; it is easy to obtain the
dently varied. In one case, they required the angfe domain of validity for each simplified EE, and it is a subdo-
(=m/2— 6) of the film plane with the vertical to be small, main of the all-embracingcorresponding to the GB&alid-

é~ €, and stipulatedR~ ' andW~ e~ ! (in our definitions ity domain. Outside of the latter parametric domain, there is
of RandW: see Sec. Il beloy As a result, they obtained an N0 single EE which could approximate the film evolution for
EE containingboth dissipative and dispersive ternfand &l ime. That this is the case is argued in Sec. V by analyz-
with all coefficients in the EE being-1). However, their ing the structure of possible correction terms of the EE
second case, for which they chose @etl, R~1, andW through all orders of the iteration procedure particular, as
~e 1 resultéd in an equation witho dispérsive t'erms(.ln was shown in Refd21,22 —where a different derivation of

the SP framework, it is only formally that the latter equationthe samehI_Eli was skeatched;tﬂmﬁ:itydes%f incli_ne(il-fillzné
can be obtained from the former by omitting its dispersivewaves’ which can be descri €ior a time) y a single ek,
are necessarilgmall] The paper is summarized in the last

term, and the only way to really “justify” the nondispersive i S f 1h technical iderati |
equation is to repeat the entire derivation procedure startingcc\'of- S0me ol the more technical considerations are rei-
gated to the Appendix.

all the way back from the NS equatiops. ) . . . L

If a given inclined-film system is not close to any of these . Simulation results for different versions of the inclined-
two parameter-space curves, the thdd] is invalid. Logi- film flow EEs we obtain here will be given eIsevvhe[Eor
cally, there are three possibilitie§) the flow evolution can- some of tho;e result@n particular, those showing good
not be (approximately reduced to a single EE for all time, agreement with experimenfS]), see Ref[4] ]
(i) such a reductiors possible but the resulting EE is dif-
ferent from each of those obtained in REE6], or (iii) the Il. EXACT NAVIER-STOKES PROBLEM
EE coincideswith one of their two EEs, despite the different

arameter curve. We are naturally led to the following ques- We consider a layer of an incompressible Newtonian lig-
b y 9 qUeSyig flowing down an inclined plane under the action of grav-
tions: (i) Under what(parametri¢ conditions is an approxi-

mate description of the film flow possiblor all time) [ty Our (Cartesian coordinates are as follows: theaxis is
which can be reduced to a single E@? How can the set of normal to the plane and directed into the film, thexis is in
all such EEs be characterized? These are the questions wee spanwise direction, and tkeaxis is directed streamwise
pose and attempt to answer, for inclined-film flow, in this (the overbar here and below indicateslimensionalquan-

paper. tity). The corresponding components of velocity arev,

\We note that one must distinguish between diitime 4 1 \yje genote byp the pressure field in the film; the

validity of an EE and thdimited in time validity. This issue ressure of the ambient passive aas is nealected for simplic-
arises because, in the SP approach, the fixed powers of the P 9 9 P

small parameter are stipulated not only for the global param- : . L
eters of the system, which do not depend on time, but als The system is determined by the following independent

for the characteristic time and length scales. However, the dimensional parameters: the average thickness of the film

characteristic scales can change with time asdissipative  Do: the liquid densityp, viscosity ., and surface tensioa;
system proceeds to the attractor; so, theyiastantaneous gravity acceleratiorg; and the angle of the plane with the
parameters. Thus, the assumption of fixed scales is incorreborizontal 6.
after a limited time has elapsed and, therefore, the SP deri- There is a well-known time-independent Nusselt's solu-
vation is invalid. tion of the NS problem for the inclined film. The thickness of
The rest of the paper is organized as follows. In Sec. lithe Nusselt film is constarhence, Nusselt's flow is also
we formulate the full NS problem. In Sec. I, we introduce referred to as a “flat-film” solution The only nonzero com-
an iterative perturbation procedure. It starts with the well-ponent of velocity is the streamwise one. It only changes
known (although typically unstabje waveless, “Nusselt” across the film, starting from the zero value at the solid
solution of the NS problem. The only principle necessary inplane. The free-surface valué of the Nusselt velocity is
deciding the iteration steps is the requirement that in the e”qJ_—g_hésin 0/(2;) (Where7 ;/; is the kinematic viscos-

asingle(and valid for all tim¢ EE should be arrived at, with ) “\we nondimensionalize all quantities with units of mea-
minimal simplification of exact equations. No dependencies

are imposed on the internal parameters: the validity condiSUrement based on ho, andU (we have, e. 9., the following
tions (VCs) we obtain require that several quantities, whichunits: ho for all coordinatesl for velocities,hy /U for time

are certain products of powers of the internal parameters, b pU2 for preSSure,pU h0 for surface tension, efc.We
small—independentlyof one another[So, severalindepen-  will see that exactly three independebasic parameters
dent(small) parameters emerge in the derivation. Thus, thgBPsg appear in thedimensionlessquations and boundary
iterative procedure we introduce here is a variation of theconditions of the problem; one can choose, e.g., the in-

“multiparametric” perturbation approach developed in Refs. ¢jination angle 6, the Reynolds numberRzEU/?

[17-20.] =
In Sec. IV, we arrive at the most general evolution equa[ gh S|n0/(21/2)] and the Weber numbeW=oR/2

tion (GEE) valid (provided certain restrictions on parameters[ = ol(pgh3siné)], as such BPs.

are satisfiefl for all time; any all-time-valid EE derivable =~ We can write the Navier-Stokes momentum equations in
with a conventional Sing|e-parameter approach necessari@oordinates mOVing relative to the solid plarle with a constant
coincides with one of just a few prototype equations whichvelocity V in the z direction (i.e., introducingz=z—Vt and
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omitting the tildg in the following dimensionless forrtsee,
e.g., Ref[23)):

U+ Ul +vuy+wu,—Vu,
2 1
=—Py— ﬁcot0+ ﬁ(uxx+ Uyy+ Uz, 1
Vituv,tvvytwy,— Vv,
1
=—py* ﬁ(vxx"— Vyy+sz): (2
Wi+ UW, +vwy +ww,—Vw,

2 1
=—p,+ R + §(Wxx+ Wyyt W), 3
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It appears that aiterative perturbation approach is appropri-
ate for the general analysis of the problem.

Looking at the previously known, convention@ingle-
parameter expansipmlerivations of EEqvalid each for its
own particular curve in the parameter space; see the Intro-
duction), it is clear that each of them in effect discards some
terms of the NS momentum equations so that each of those
essentially becomes an ordinary differential equatiobDE)
in X, linear and with constant coefficients, that is easy to
solve (with similar simplifications in BCs When these so-
lutions (for velocities in terms of film thickne$sare substi-
tuted into the kinematic conditiof®), the EE for thicknesh
(or, equivalently, for the thickness deviatiop=h—1) en-
sues. However, after all the quantities have been expanded in
power of e (see the Introduction one has no control over
which NS terms to omit; this is simply dictated by the ex-
pansion scheme of the SP approach. Thus, sometimes

(The subscriptsx, y, z, andt here and below denote the “harmless” terms are discarded; even if they were retained,
corresponding partial derivatives. We will see below that it isone still would be able to solve for velocities, arriving, as a
appropriate to choos¢=2, the common phase velocity of result, at a clearlynore generaEE.

all infinitesimally weak wave$.The continuity equation is

Uyt Vvy+w,=0. (4

Accordingly, our main idea in this paper is to look for a
derivation in which the single postulated requirement would
be that a maximally general EE for film thickness be arrived
at in the end, so only those terms of the exact NS equations

The BCs are as follows. The no-slip conditions at the solid,;;| pe discarded which are clearly in the way of obtaining

plane are

u=v=w=0

(x=0). ©)

linear ODEs for velocities and pressuynee call this prin-
ciple the “minimal requirement of derivability'MRD)]. In
this way we obtain approximate solutions for the deviations

The tangential-stress balance conditions at the free surfac¥ exact solutions from the “seed” Nusselt's fielfis.g., the

x=h(y,zt), the local film thickness, are
(Vituy) (1—hd) +2(ue—vy)hy = (v, +wy)h,
—(u+w,)hyh,=0 (x=h) (6)
and
(Uz+ W) (1—h2) +2(u,—w,)h,— (v, +wy)hy
—(uy+vyhyh,=0 (x=h). (7)

The normal-stress balance condition is
2 2\3/2 2 2 2
—p(1+hj+hy) +§[ux+vyhy+wzhZ

—(uy+vyhy+(v,+wy)hsh,
— (U, +Wy)h,](1+hi+h2)Y2
=o[hyy(1+h2)+h,(1+h%)—2hshh, ] (x=h).
(8
Finally, the kinematic condition at the free surface is

hi+vhy+wh,—Vh,=u (x=h). 9

lll. ITERATIVE PERTURBATION PROCEDURE

A. Minimal requirement of derivability

approximationw, to wo=w—w,y, where the Nusselwy is
known; see Eq(12) below]. For some parameter values, this
immediately leads to an EE whose approximation of exact
evolution is good for all timéhere, as was mentioned in the
Introduction, we are only interested in such all-time-valid
EEs; see, e.g., Ref4] for a further discussion of their dif-
ference from the EEs whose validity lisnited in time). In

other cases, however, the procedure must be repeated, with
the refined solutions, such ag+wg, playing the seed role
that was played by the Nusselt solutions on the original stage
(so that at the second iteration stage one determines the ap-
proximationw; to W;=w—wy—W,, etc). Thus, ours is an
iterative perturbation approach, which is known even in gen-
eral to be an alternative to trexpansionrmethod(see, e.g.,

Ref. [24]).

Estimating all members of NS problem equations in terms
of parameters, the requirement that the discarded members
be much smaller than those retained leads to the parametric
conditions for our derivation to be validee Appendix A
Thus, the method yield§) the evolution equation for film
thickness,(ii) explicit expressions for velocity components
and pressure in terms of the film thickness, &iid the para-
metric validity conditions of the theory.

It is known (see Ref[4] and references thergithat no
single EE description can exist globally in time for those
parametric regimes of inclined-film flow which lead to the
eventual amplitude of surface waves being “large”—
comparable to the average film thickness. But in the present
communication, as was mentioned above, we are interested

As was motivated in the Introduction, we are interested inexactly in thelarge-time behavior, when the system is al-

the question ofapproximate reducibility of the above com-

ready close to the attractor, and we waisiregle EE descrip-

plicated description of inclined-film dynamics to a single EE.tion of the wavy film dynamics. Therefore, in addition to the
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MRD principle, we can use from the very beginning—in
order to simplify our derivation—the requirement that the
amplitudeA of the film thickness deviationA(t)=max 7,

be small(for all time); with

h=1+ 7, (10
we have

max 7(y,z,t)|=A<1. (11

A. L. FRENKEL AND K.

INDIRESHKUMAR PRE 60

C. First iteration step
We represent the exact velocities and pressure in the form
of sums of Nusselt’s solutions and the deviations from those:

W:WN+\7V0, U:UN+rJ0,

v=vy+Vo, P=Pn+Po. (20

where tildes indicate the deviations from the Nusselt solu-
tions. First, we consider themomentum NS equation. We

[Note thatA can depend upon time; in such cases, we sapubstitute the expressiori0) for velocities and pressure

that the parameter is cal parameter, in contrast to the
time-independent “global” basic parametefs R, andW.]

into Eq. (3). The resultingexac) equation can be written in
the form

However, unlike the conventional derivations, we do not
have to postulate that the characteristic length scales in the Woxx= R Po,— V 2Wo+ RWo, + RUg(Wy+ W)+ RVWo,

film plane are largdthe long-wave assumptignrather, this
will follow from the MRD principle.

B. Nusselt's solution

The above-mentioned Nusselt solutif the NS prob-
lem), which is steady and uniform along the filfice., in the
streamwise and spanwise directipnis as follows. The di-
mensionless Nusselt streamwise veloeity is

Wi (X)=2x— X2 (12
This clearly satisfies the NS equation
W=~ 2, (13
with the boundary conditions
Wnx=0  (x=1) (14
and
wy=0 (x=0). (15
Similarly, the Nusselt pressure
2
pN=§(cot0)(1—x) (16)
is the solution of thex NS equation
2
Pnx=— ﬁcote, 17
with the boundary condition
pn=0 (x=1). (18

Finally, the Nusselt normal and spanwise velocities are

uy=0 and vy=0. (19

At sufficiently large Reynolds number, the destabilizing
effect of inertia overcomes the stabilizing influence of grav-
ity so that the Nusselt solution loses its stabilign analysis
later in this section leads tB>(5/4)cotd, the well-known
criterion for instability) As a result, the film is not uniform
any more and also changes with time.

+ R(WN+WO_V)WOZI (21)
where V2= 92/ gy?+ 9/ 9z°. In accordance with the MRD
principle, as was discussed above, in order to obtain a solv-
able ODE inx, we have to discard all the terms on the right-
hand side(RHS) of Eg. (21), since every one of those con-

tains unknown quantities. This yields a simplified equation
for the velocityw,, whose solution we denote hwyy:

Woyyx=0. (22
We callw;, the error in the approximation af, by wy:
Wo=Wo+W;. (23

It is clear[see Eqgs(10) and(11)] that the characteristic
length scaleX is of Oy of 1 (X~1), i.e. (since d/dx
~1/X),

d

—~1

o (24)

We denote byY andZ the characteristic length scales in the
spanwise and streamwise directions respectively, so that

J 1 o5
oy Y (25
and
J 1 ”
> 7 (26)

Similarly, denoting byT the characteristic time scale, we
have

J 1

at T 27
Also, clearly,d?/9x>~1, 9%/ 92>~ 1122, dl ay>~1IY?, etc.

The characteristic magnitude of each of the neglected
terms on the RHS of Eq21)—estimated by replacing,
with wg, etc.—should be smaller than that of the term on the
left-hand side Wqy,: Wo/Z2<wqo/X2 and wo/Y2<wqy/X2.
Hence, we have the following restrictions on tfiestanta-
neous length scales for the validity of our theory:
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Finally, the no-slip condition requires

1

—<1 (29

Y? Wo=0 (x=0). (35)
and The solution of Eq(22) with the boundary condition&34)

and(35) is clearly

1

—<1. (29 Wo=27X. (36)

22

Note that from Eqs(12) and(36),
Thus, as a consequence of our derivability requirement, we

have obtained the longwave conditions, which are ralost Wnx T Wox=0  (X=h), (37
tulated in the conventional “lubrication” or “long-wave” . .
derivations. which we will use below. We also observe that
Slml_larly, using Eqs(26) and(Z?), the condlfuons that the Wo~A(<wy~1). (39)
advective inertial term containingvy, that is the term
RVw,, and the time-derivative teriRw,, be both smaller Next, consider the incompressibility equatipsee Eg.
thanwy,,, lead to the following requirements on the param-(4)] in the form
eters: _ _ _
R Uopx= —Voy— Woz—W3z. (39
><1 (300 (Note thatwy does not make any contribution to this equa-
tion, sincewy does not depend om) Dropping the terms
and with unknownsv, andw, on the RHS, we obtain an equa-
tion for the approximation:
R
?«1 (31) UOX: _WOZ: _2X772 (40)

. . . , . The no-slip BC(5) requires
Henceforth, we confine our consideration to the film configu- I BC(S) requi

rations which satisfy the condition&®8)—(31). Note that Up=0 (x=0), (41)
since the local parametess Z, Y, and T can change with

time, they may cease to satisfy the validity conditipasch  and one readily obtains the solution

as Eq.(11) and Egs.(28)—(31)] at a certain stage of the

evolution. In such cases, clearly, the single EE description

would be valid only for a limited time that thegand some

other, additional conditions appearing in Appendix ill We note that
hold. Later, we will determine domains in the space of global

parameters for which such a violation of VCs never Ug~ Z<l. (43
happens—so that the single EE approximation is valid glo-

bally rather than merely locally in time.

The boundary condition omv,, at x=h, given by the
tangential-stress balance equati@p is written in the form

UO: _X2772. (42)

We denote the deviation of the exact solutiag from the
approximationug by U, so that

~ ~ ~ ~ ~ ~ aoz U0+a1. (44)
Wox= —Wpx— Ug, [ 2(Wo,— Ugy) 7, + (V02+W0y) Ny
The (x-momentum NS equation for the deviation of pres-

+(Uoy+ Vo) mym (1= 7)™t (x=h). (32 syre from the Nusselt solutiopy, is
According to the MRD principle, we have to drop all the  _ 1. ~ ~
terms containing the unknown quantitighose denoted by Pox= g (Uoxxt Uoyy+ Uozo) + & (Unxx T Uzyy+ Uszd)
letters with tildg on the RHS. Also, using the smallness of
the surface deviatio11), we will everywhere transfer the — (Up+Up);— (Ug+Uy) (Ug+Uyp)x—Vo(Ug+Uy)y
boundary conditions from the true boundary h to a con-
venient “boundary” x=1 by expanding all quantities in — (Wn+Wo+W;— V) (Ug+Uy), (45)

Taylor series around=1 (cf. Ref.[24]), such as
[where we have used E¢L7)]. In this equation, we have to
Wox(X=h). (33  drop the terms containing the unknowng, Wy, or Us. Next,
it is easy to show that the,, term[which is~ug due to Eq.
Noting thatwy,(x=1)=0, we have the simplified boundary (24)] on the RHS is much larger than the other terms.
condition (for the approximation w of the exact quantity Namely, uoyy~u0/Y2<u0~u0XX due to Eq.(28) and ugy,,
Wo): ~Ug/Z?<Ug~Ugyy due to Eq. (29). Similarly, Rug,
~(R/IT)upg<ug~uUgxx by making use of Eq.(31), and
Woy=—Wnyx7=27 (Xx=1). (39 R(wy+Wo—V)Ug,~RUg,~ (RIZ)up<<ug~uUgyy due to Eq.
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(30). Finally, ugugy<<Ugx~Ugxx, Sinceuy<l [see Eq(43)].
Thus the simplified equatiotfor the approximation p) is

1 2

pOx:§u0xx: - ﬁnz- (46)

The BC atx=h [see the normal-stress balance condition, Eq.

8)]is
~ _ 2 ~ ~ 2 = 2
Po=—Pnt R{(Uo+ Ug)xt+Voy 7§+ (Wo+W1) .75

_[(Uo+al)y+\~/0x] 7]y+[’\702+(W0+VV1)y] Ny
~[(Ug+ Uy + Wy m b (L+ pf+ m2) "

— ol pyy(1+ 72) + 9, A1+ n5) — 21y, ]
X(1+np+73) "% (x=h)

(47)

[where we have used E7) to eliminatewy, andw,]. We
have to drop those terms containiag, Wy, or u;. In addi-

A. L. FRENKEL AND K. INDIRESHKUMAR
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Voux=R(Po+P1)y— VAWo+ RV + R(Ug+Up)Voy
+ R‘\N/O’\v/oy"_ R(WN+W0+W1_V)‘\N/OZ. (53)

Dropping the unknown terms on the RHS, we obtain the
simplified equation:

Voxx=RPoy=2(c0t6) 7y~ 2(1+X) 7,— 2WV? 7, , o
54

where we have used the expressib) for p, in terms ofy
to get the RHS in the explicit form.

The BC onv,, atx=h, is [see Eq.(6)]

T/Ox: - (u0+a1)y+{2[V0y_ (u0+al)x] Ny
+ [(u0+al)z+vle] NyMz

+[VOZ+(WO+VV1)y] 7]2}(1_7]32/)71 (x=h),
(55

where we have again used H7) to eliminatewyy+Wwqy .

tion, a number of known terms are estimated to be smallePmitting the terms with tildes and performing the, by now,

than the term with ug,. Namely, by using the
estimates ofw, and u, [Egs. (38) and (43)], wo, 7,7,
~(AIZ)(AIY)2<AIZ~Uug~Ugy. Similarly, wg, 72~ (A/Z)
X(A%Z%)<ugy. Also, Ugyny~UgA/Y?<ug, and ug,7,

~UgA/Z?<ug, . Finally, one can see that each of the other

known nonlinear terms can be neglected singe-A?%/Z?
<1, n;~A%Y?<1, andzyy, 7,7y~ A% (Y?Z?)<1. We also
note that the entire Taylor expansion fog(x=1+ %) con-
sists of just one term,

Pn(h) = prx(1) 7. (48
With the known expressions f@y , wp, andu, (see above

and using Taylor series about=1, truncated to the first
nonzero term, for all the quantities, one obtains the BC

2 2
Po=—Pnx7T ﬁUOX_UV n

2 4 5
=—(COtt9)7]—§7]Z—0'V 7 (x=1). (49

R

The solution of Eq(46) with the boundary conditiof49) is

Rpo=2(cotd) n—27n,(1+Xx)—2WV 2. (50)
We observe that
1 W W
Rpy~ma cota,z,?,ﬁ A. (51

As usual, we calip; the difference betweep, and its ap-
proximationpg:
Po=Po+Ps. (52

Finally, consider they NS equation,

familiar estimates of the known terms on the RHS, we see
that the termuy, is larger than any other term, so that the
simplified BC atx=1 is

(x=1), (56)

Vox= — Uoy™= 7zy

where the expressio@?2) for ug has been used. Finally, the
no-slip condition

(x=0) (57)

is to be satisfied. The solution of E¢4) with the BCs(56)
and (57—as can be readily checked by direct
substitution—is

V():o

X3
Vo= (cotfn,—WV?275,)(X?—2x) - nzy<§ +x2—4x) .

(58)
This yields the following estimate forg:
coté W W 1
Vo~ max N Yz vz A. (59
As usual,
Vo=Vo+V;. (60)

Substituting Eq.(60) into Eq. (39) we observe that, in
obtaining the simplified equatio(0) for uy,, we have in
fact discarded/q, . This requires

Vo
Voy"“ 7 < Ugx~ Ug

(61)
(which will be used below By using here the estimaté4$3)
for up and (59 for vy, we arrive at the VCs
max{ Zcot 6/Y2 WZIY* WI(Y?Z)]<1. These are a subset of the
complete set ofinstantaneoysvVCs obtained in Appendix A
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[see Eq(AL10)]. It is straightforward to verify that each dis-

WAVY FILM FLOWS DOWN AN INCLINED PLANE: ...

4149

W1y = R Po;— V2Wq+ RUgWyy+ RWyWoz— 2R Wp, + RWoq

carded term in every step of our procedure is small as a

consequence of those VCs.
The kinematic conditiofEqg. (9)] at x=h becomes

M+ (Vo+Vy) 77y+(WN+WO+VV1_V) 7,=Up+Uj. 62
62

= 2(C0t9772_WV27]z) —2(x+1) 7,

—2XV2 5+ (2x°— 4x)R7,+ 2xRy; (69)

where we have used the known expressigmserms of sur-
face deviationz; see the preceding sectijofor the first-
iteration approximationg,, wg, and ug. [For analogous

Dropping the unknown terms with tildes and the smallerequations of the generaith, iteration step, see Appendix C

termsvon,~ (Vo/Y) 7<Uq [see Eq.(61)] andwgn,~A%/Z
<Up, We have

of Ref.[25] (the present paper extended by two appendices:
Appendix B and Appendix C]

77to+(WN_V) _— 63) ;I'he BC onw,, atx=h, comes from Eq(7):

W1y = —Ug, T 2Wq, 77, ~ 2Uqy 72+ Woy 7yt Voz 7y
where we have introduced the “fast” timig, such thatd,
=y, Iy~ Oy, Using the Taylor expansions fary andu,

we obtain, atk=1,

+ (UOy+VOx) Ny Nz

+[terms containingv,, Uy, vy, 0rp;]  (x=h),

(70)

where we have taken into account E§7). Continuing to
ChoosingV=2, we can eliminate the fast-time undulations use the simplification procedure established in the previous
(which are clearly due to the uniform translation of the wave section, we arrive at the boundary condition
with no change in its shape Wi=—Ugy=17,, (x=1). (71)

All other terms on the RHS of E¢70) are readily estimated
in our usual way to be smaller tha, [Eq. (61) is useful in

Thus, the leading approximation determines the velocity of £Stimating terms containing]. The no-slip condition is

7, T (2= V) 7,=0. (64)

My ™ 0. (65

reference frame in which film thickness does not change on w;=0 (x=0). (72)
the fast time scale. However, it will change with the slower
time t;. In order to obtain this slower-time evolution of the The solution of the problent69), (71), and(72) is
film thickness, one needs to consider the next approximation 5 5
for the velocities and pressure. From now on, we fix wy=(cotfn,— WV n,)(x"—2x)
4
X 4 2
V=2. (66) T B i [ Bx— Sx3—x2
6 3x 3x Rn,+| 5x 3x X | 122
Then, in view of Eq.(65), 3= dy . x3 X3
+| x— 3 Nyyt g—x R, (73

D. Second iteration

We now proceed to consider the “correctionsl;, Uj,
P, andv; for the velocities and pressure. By substituting

WOZWO‘FW]_, TJ0=u0+TJ1,

Vo=Vo+Vi, Po=Po+P1 (67)

into the z NS equation(21), and taking into accountvg,,
=0 (22), we have the exact equation

W1y = —Woxx T RPgz— V2W0+ RWor+ R Ug(Wy+Wp)x
+ RV0W0y+ R(WN+WO_ Z)WOZ

+[terms containingvy, Uy, V4, O p,]. (68)

Performing our standard simplification procedure, i.e., dis-

carding the unknown termgcontaining tildey and small
terms, and also taking into account thag<w, [see Eq.
(38)] andvyy<uq [see Eq(61)], the simplified equation for
the approximatiorw, is

which can be verified by direct substitution into the problem
equations. Note that all the terms wf are estimated to be
quadraticin the local parameter@A10); one can show as a
generalizatiorisee Appendix C of Ref25]) thatw,, is of the
power (n+1), and similarly foru,, v,, andp,.

Taking into accountug,= —Wwg, [see Eq.(40)], the in-

compressibility condition yields the equation foy,

Uix= —Wi,— Wy~ Voy—Viy, (74)
where we have expresse@g asw;=w;,+Ww,. Dropping the
unknown terms, we obtain an equation for the approximation
Uq:

Uix= —Wi,—Voy

=—(x2=2x)(cotdV?n—WV4y)

xt 2 s 4
== =x3+=x

6 3 3 R77ZZ

3

2 3 2|2 X
- 5x—§x —X°|Vn,— 3 X R#n, (79
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with the BC
U]_:O (X:O) (76)
It is easy to verify that
X wv4 V2 X X 20 R
Up=| 3 =X |[WV 9= cotoV=n]—| 55— =+ 3X° |Rnz;
x* x352V2 x4 sz ;
etz 22XV |57 5 |Rm (77

is the solution. We note that the complete set of (&%0)
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Simple linear-stability analysis can reveal the dynamical
role of some terms here. Assuming an infinitesimally small
disturbance in the form of a normal modejec exp(st
—iwt)expi(jy+k2), it readily follows from the linearized ver-
sion of Eq.(82) that

2
s=§[5k2—(cote)jz—W(k4+2j2k2+j4)] (83)

and

w=—2k(k?+j?). (84)

obtained in Appendix A guarantees that all the terms disyere s is the growth(or decay rate for the disturbance and

carded in obtaining solvable ODEs far, andu; are small

in comparison with(the biggest of those terms that are re-

tained.
At this point, we could proceed to solve tleNS andy

NS equations for the pressure and velocity correctipps

so the third, fourth, and fifth terms in E¢82), which give
rise to growth(or decay, are dissipative[considering the
destabilizing ternithe one withs) as anegativedissipation.

In contrast, the last term in E¢82) only makes a contribu-
tion to the(rea) frequencyw, rather than to the growth rate

and v,, respectively. However, these corrections are nos, i.e., it does not lead to growth or decay of disturbances.

needed for obtaining the second-iteration EBne only
needs the pressure and velocity corrections forldber it-

eration stages. These corrections are calculated in Appendix

B of Ref.[25].)

IV. THE DISPERSIVE-DISSIPATIVE
EVOLUTION EQUATION

The (exac) kinematic conditior(9) atx=h can be written
in the form

7t (Votva) my+ (Wy+Wo+ Wi +W,o—2) 7,

=Ug+tU+l; (x=1+7), (79)
where we have used=2 (66). Dropping the terms contain-
ing unknown velocities(those with tildey and using the
Taylor series to relate the velocity componentsxath to
those atx=1, we have

Nt (Whx?+Wo) 7= Ugyp+ Uy (X=1). (79
In Eqg. (79), we have dropped the termg», andw; 7, as
they are smaller tham, [see Eq.(75)]. Also, recall that
Wy (X=1)=0 [see Eqg.(12)]. Using the expression&36),
(42), and(77) for wg, ug, anduy, we obtain

5 2
{77— 1—2an +4nn,+ 557722
t

2 2 4 2
- §cot0nyy+ §WV n+2V<n,=0 (80)
where, by definition,
4
= §R_ coté. (81

However, the terme«cR#,~(R/Z) <%, since RIZ<1
[see Eq(A10)]. Dropping this small term, we have

2 2 2 4 )
mtann,+ §5Uzz_ S cotény,+ =WV**yp+2V4y,=0.

3 3
(82)

Thus, this(third-derivative term isdispersive
Clearly, for instability to develogi.e., fors>0), we need

6>0, (85

a condition we assume fulfilled from now on. This yields the
so-called critical valueR, of the Reynolds numberR.
=(4/5)cot#, at which the instability sets in.

One can see from the above derivation of the dispersive-
dissipative EE(82) that the destabilizingthird) term origi-
nates from the inertia terms of the NS equations. [&tabi-
lizing) fourth and fifth terms are due, respectively, to
hydrostatic and capillaryi.e., surface-tensignparts of the
pressure. Finally, the last, odd-derivative term is due to the
viscous part of the pressure. Such a purdilspersiveterm
also appeared in the EE obtained by Topper and Kawahara
[16] for an almost vertical plane; they used the small angle of
the plane with the vertical as theisingle perturbation pa-
rameter(see also the discussion in the Introduction of the
present papér Our derivation shows that assumption to be
unnecessary. In particular, for the vertical film éet0, and
Eq. ( 82) becomes

8 2
Mt ANt ER7t §WV477+ 2V25,=0. (86)

Although an equation of this structui®ut with arbitrary
coefficients was postulated as a model equation in R26),

it cannot be obtained from the derivation of Topper and
Kawahard 16]; since their small parameter is proportional to
cot, it becomes zero for the vertical case, and the Reynolds
number(also proportional to the small parameter in that SP
derivation vanishes, which, clearly, cannot correspond to
any flow at all.

The (infinite-dimensional dynamical system governed by
the dissipative equation (82) essentially “forgets” initial
conditions as it evolves towards an attractor. There may be
fluctuations on the attractor, but there is no systematic
change in time. Clearly, then the amplitude-decreasing, sta-
bilizing term must balance the destabilizing oftke latter
tends to increase the deviation amplitudeo the two dissi-
pative terms are necessarily of the same order of magnitude
on the attractor.
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As to the magnitude of the dispersive term relative to that 1 R W
of the dissipative terms, there can occur, depending on loca- max A, T URIE <1. (89
tion in the parameter space, each of the following three pos- L L

sibilities: (i) these terms are of the sardy,, (ii) the disper-
sive term is smalland then the amplitude is determined by
the balance of the nonlinear term with the dissipative terms

?nr?n('g)lt?]e d'sti'paé:\/e treri\r;ws ();r; fr:ni#rn? the nonl:‘r:iiar EE (82), the system evolves towards an attractor, and in the

iﬁ th ai? r(;?if)n erocsepsi?/v ?Jld lead ?o ssm;ﬁlsc%rrceocti nus- toasymptotic limit of large times we hava(t)=cons&A,
g the iteration p woulid fe 0 and L(t)=const=L,. Since (similar to Refs.[32,17]) the

the terms which cannot significantly change the evolution. In A

! X ... destabilizing inertia term should be of the sa@g as the

the second case, the small dispersive term can be omlttes abilizing, capillary one, i.e., 87, (~ dA/L2)~WV

with a negligible effect, so the corrections would be again %’ piiary —one, 1.€.,07; .. @ 7

immaterial. (~WA/L§), the (dimensionless characteristic length scale
But in the third case, when dissipation is small, the situ-at large times |, can be taken to be

ation is very different. Discarding the dissipative terms leads W) /2

to a 2D Korteweg—deVrie&KdV) equation which was simu- L,= 3) .

lated numerically in Ref[27]. The KdV equation is purely

dispersive and never forgets the initial conditions. It has asjmilarly, the asymptotic magnitude of the characteristic am-
one-parameter family of axisymmetric solutions which arepjityde A, is determined by the balance between the nonlin-
traveling solitons, similar to the well-known 1D KdV case. ear “advective” term and either the dispersive term or the
Depending on the initial state, there may be solitons of dif'capillary one (whichever is larger Aa=max(\N/L§,1ﬂ_§).
ferent length scalesand therefore moving with different gjng these asymptotic values of parameters, the conditions
speedsin the final state. However, if the small dissipative (89) can be written as maxy/L3,R/L,,11.2)<1. Noting
terms are present, they will slowly change the initial SO”tonthat in view of Eq.(90), W/L3 561/,L a;’d [Sge EoB0] R
of an arbitrary length scale. It will evolve along the soliton ' N a a B

y 1eng g =(5/4)(5+ cot6)> 4, so that\N/L§< R/L,, we can simplify

family until the length scale is attained which provides for h / P . f the basi
the balance between the two dissipative terithés effect 1€ VC 10 maxR/La,L,%)<1; in terms of the basic param-

These are conditions afistantaneouwalidity; they involve
the local(i.e., instantaneoyparameterd(t) andL(t).
As was discussed above, due to the dissipativeness of the

(90

was first studied for the 1D case in RE28]; see also Refs. €ters:
[29-31)). Therefore, the dissipative terms, even wisemall 1o
i : i 1 o R
are important; they determine the length scale of the solu- a=—=—<1, B=—=Rl—| <L ©1)
tion. L2 W L, W

However, only thelargest-magnitudeerms are guaran- In th . it is sh h | d
teed to be correct in the above beginning-iteration derivation'" the next section, it is shown that we also nee

as for the smaller terms, further iterations might yield sig- maxR,R?)

nificant corrections to them. We consider this questioh 75T<1 (92
higher iterations and corrections to small dissipative térms

in the next section. It turns ouperhaps, surprisinglythat  (otherwise, the dissipative terms contributed by higher itera-
such corrections can be importdotally under some para- tions can become significant, and the evolution cannot be

metric conditions, but that n¢single corrected EE can ap- all-time describable by a single ERAIl three parametersy,
proximate the evolution for all time. Equati¢82) is thus the g, andy, are small if(recall thats<R)
most general of those EEs that can be vaidbally in

time—under appropriate parametric restrictions, which can R pg’hgsir’ 0
be completely determined only with the analysis of higher aR= = —<1 (93
iterations of the NS problem, as is done in the next section. 20v
For the rest of this section, we continue the consideration of
the GEE(82). an
From the conditions>0 [Eq. (85)], it follows that ¥z (TRl 12— 20
5 Br= :(pﬁ) (g SO <1 (94)
R>7 cot6>coto. (87 w¥2 | 8o v

So, if we are in the domain of the space of basic parameters
which satisfies the condition max{,85)<<1 [or a bit more
general, but less simple condition may8,y)<1], then Eq.

(82) is goodfor all time [provided that the initial amplitude

ther 6<R~R.~ coté or 6~R, we see thaY>Z or Y~Z ; "
RN ' and length scale satisfy the conditio(@9)]. Therefore, we
except perhaps farR>cot . For simplicity, we assume that call such conditions the “global” VCs.

Z<Y, which seems to be the case in all experiments we \\.o ~an transform the GE®2) to a “canonical” form—

know about. Then which contains only two “tunable” constants—by rescaling
L=min(Z,Y)=Z. (88) the variables with appropriate units:

From EQ@s.(82) and (83), it is clear that, in order for insta-
bility to develop, we needr,,> (cot6) . Using they and
z length scales, this yield¥,?/Z?> (cot 6)/5. Noting that ei-

With this and the conditiori87), the VCs(A15) reduce to 7=N7, z=L.z,
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is the usual KdV equation. Wheka=0 but e—o (so that,
after an appropriate rescaling, the dispersive term disappears
from the equatiopy Eq. (96) becomes the one obtained by
Nepomnyashchy34], whose 1D version is the Kuramoto-
Sivashinsky equatiof85,36. All of these equations are thus
limiting cases of EH96).

Numerical simulation$22] of this equation have shown
that its solutions remain bounded for all tiniwhich prop-
erty always is implicityassumedn global-validity consid-
erations, and therefore must be directly verifadter the EE
has been obtaingédFor example, Fig. 1 shows the evolution
of the surface deviation “energy’ 5> dy dzfrom an initial
o Lo small-amplitude §~10"2) “white-noise” condition to a

o 600 1000 1600 statistically steady statéfor k=0 and e=1/50). Detailed

Time (arbitrary units) numerical studies of E¢(96) will be presented elsewhere.

100

"Energy” (arbitrary units)
50

FIG. 1. Evolution of energy illustrating that the solutions of Eq.

(96) remain bounded. V. ADDITIONAL DISSIPATIVE TERMS

5 5 In this section, we examine the implications of the addi-
y=Lpy, t=Tgat, (95  tional dissipative terms arising from further iterations. We
take into account explicitly all the linear dissipative and dis-
whereN=1/(2L3) andT,=L3/2. Dropping the tildes in the persive terms with derivatives of order four or less by going
notations of variables, the resulting canonical EE is through the iterative process twice. We also estimate the ef-
2 4 fect of dissipative terms with derivatives of order six or more
net nn— Kknyyt Ven,+ e(n,,+V77)=0. (96) on the EE.
We note that, for obtaining the evolution equation, we
need only the successive iterates of the normal velagity
This is because the nonlinear terms involving, andv 7,

The control parameters in this equation are

€= §\/W_5 97 in the kinematic condition make smaller contributions to the
EE. (Indeedu~w,+v, and, e.g.w,n generates the same
and terms as thev, part ofu, but with the extra small factor.)
We have found the next two iterative corrections for the
Lacotd 1 \/W normal velocity,u, andus, Egs.(B22) and(B37) in Appen-
K=—3 =3\ zcoto. (98)  dix B of Ref.[25]. [We needus (in addition tou,) because

its dissipative terms are not guaranteed to be much smaller
For the case 0k=0 (e.g., flow down a vertical wall Eq.  than those olu,. However, the dissipative terms af, are
(96) becomes essentially the model equation postulated angiuch smaller than those af, so we do not have to consider
numerically studied in Ref26]. If, in addition,e=x=0,we  u,.] Using these in the kinematic conditid®), we obtain
have the 2D KdV equatiof83], whose 1D ¢,=0) version [see Appendix B of Ref.25] for detailg

5 4 , 295 2 2 5 2. .
= 12R772 15RCOt¢9V n+ 672R 7722 47]772—§5nzz+ §Cot07;yy— 2Ven,— §WV 7
23 5 2 2,
15R 2 cotl|(nn,),+ 14R cotovVen,— 7R N2z

1241483 477523

31
168%Y 77 5108100} "% 3 2048003 OOV ez

+6 AvA 3
—cot N— g 168

5 (99

We get rid of time derivatives on the RHS by twice iterating from the RHS(99) only the terms withno time derivatives,
this equation, substitutingfor each time derivative on the and with space-derivatives of the order of 2 only. As for the
RHS) the RHS(99) of Eq. (99) itself; the remaining time term with the first spatial derivative; 7,,, the terms without
derivatives on the final RHS are omitted because further ittime derivatives and with space derivatives of orders 2 and 3
erations would only lead to derivatives of an order higherare substituted into it, and also the term (5R32), itself,
than 4, with small resulting contributiondn fact, in the first ~ with the result (5/13R?7,,,. In the second iteration, it is
iteration, when substituting into thenixed-derivativg terms  sufficient to only substitute into the latter term, and—since it
with the second spatial derivatives, it is enough to retairalready contains two spatial differentiations—only the purely
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spatial second-derivative terms should be substituted ifto it. 2 8 2
As a result, we obtain the following equation: mtAnnt 501~ EReyyt 2227 W22,
2 2 + =R - R S
Nt At 5 0. §cownyy 5Re(m7)2F | 1260 e 3378378 ¢ | ez
40 +[sum of terms of typ&2<"15(@)]=0. (101
+2V%n,+ RS R coto : .
2t G302z g3 COllayy Here the superscript on, enclosed in parentheses, refers to
5 5 the order of the spatial derivativex>k=0; k=0,1,2 ... |
+ SWV4y— ZcotoViy =(k+1),(k+2),...;andevery k+1) is odd. In Eq(101),
3 3 we have used the leading Taylor-series approximation put-
157 8 ting R=R; (recall also co#~4R/5). Also, Y>Z (as a con-
+ —-RVZ2y,,+ —Rcof V*y sequence ob7,,=R.»y,, which is required for instability
56 to develop. Furthermore, we have not included additional
1 213952 138904 nonlinear or dispersive terms in E¢LOY); the dissipative
P 2 nonlinear terms can be showsee Appendix C of Ref25
* 2007028 ezt 15598% OOV 7z Wsee App 25)

to be smaller than the leading nonlinear dissipative term
16 «R(#%n,),, and all the dispersive terms are smaller than the
+|gR-2 cota)(myz)zz 0. (100 linear oneV?y,.

Normally, the coefficients of the terms a@g,(1). How-
ever, sometimes a coefficients&l because of an accidental
The 1D (,=0) limit of this equation coincides with the near cancellation of terms as, e.g., is the case for the term
small- amphtude limit of the EE obtained, with the same nu-=Rg 77zzzz|n Eq. (101). Then we say the term is “degener-
merical coefficients, in Ref14], but our 2D version is new. ate.” Comparlng the additional dissipative terms with the
[We remark that there are several mistakes in the presentéerm ocRC 72222 @nd taking into account the instantaneous
tion of steps leading to the final equation, Eg7) in Ref. = VCsR/L<1 and 1L.2<1, the only terms which may not be
[14]. However, Eq.(27) itself appears to be correct. The negligible are those of the structur®" 7@V (n
same numerical coefficients appeared in an even earlier pa=2,3, .. .) (even those could have been neglected in com-
per [11] in a linearized 1D contexXt.The (2D) terms with  parison with the term«R%7,,,,were the latter nondegener-
derivatives of order 3 or less agree with Relf5], and those  ate. Hence, the EE can be simplified:
plus the surface-tensidiwV) term—uwith Ref.[37]. However,
note that some terms afLl00 are always negligible. For

example, the two dispersive third-derivative terms containing M+ AN+ 387~ TERyy T 2722,

R are clearly smaller than the corresponding second-order

dissipative termsbecause of the instantaneous VAL +§R N 2581R 32 3

<1 and cot/L<1), and therefore are negligible in all cases. 5 o(1712)z 1400 ¢ 3378 37§c Nzz222

As was mentioned above, since we are only interested in
situations where persistent nonlinear waves are presgent, on—1
>0, we have eitheb~R or 6<R [but not 5>R; see Eq. +Z’3 CaRe"H#=0, (102
(81)]. When 6~R, the additional fourth-derivative terms in
Eq. (82 are each smaller than the destabilizing secondwhere c,, are numerical coefficients. Can this equation be
derivative term(because ofR/L<1 and/or 1L2<1). If  valid for all time? For this to be the case, the destabilizing
max® R’)<W [see Eq(92)], those terms are much smaller term (2/3)57,, has to be balanced by a stabilizing one—by
than the stabilizingapillary term, and we return to the GEE the term =R, 7,,,, (the other, degenerate fourth-derivative
(82) with global VCs(93) and(94) (this holds as well even term is clearly destabilizingor by the first nondegenerate
for 6<R). But if Wis not large enough, so that E@2) is  and stabilizing higher-derivative term of E¢L02), which-
violated and the capillary fourth-derivative term is much ever term is dominant.
smaller than(at least one of the noncapillary fourth- Suppose first that the fourth-derivative term is the domi-
derivative members, then the destabilizing term cannot b@ant stabilizing one. Then E¢102) becomes
balanced, and the EE leads to the unlimited growth of am-

[

plitude. Thus, clearly, at such parameter-space locations, the 2 8
EE (100 can be valid locally, i.e., for a limited time only, Mt At 5002 TRy 27220
but it is not globally good.
Consider now(for the rest of this sectionthe comple- 8 2581 B
mentary cased<R (so R=R.), and with W sufficiently + ERC(””Z)Z+ 1400 ¢ 2227 0- (103

small, so that the condition maRR%)<W is violated. We

have obtained, except for numerical coefficients, all of theThe balance of the destabilizing terém,, with the stabiliz-
essential termsgwhich turn out to be linear; see the end of ing termR7,,,,Yyields the length scale~R./é . Compar-
Appendix C of Ref[25]). Including these terms in ELO0),  ing the dissipative term with the dispersive term, we have
the EE can be written in the general form Re72224 M227~ R /L<€1; the dispersive term is always domi-
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derivative coefficientc,~—0.947< 10" °. If further c,, were

all degenerate too and of the same order of magnitude, the
destabilizing fourth-derivative term would be dominant, and
hence stabilization and all-time valid EE impossiple.

A special case to consider is when the destabilizing
fourth-derivative term(which is clearly much greater than
the sixth-derivative oneis nearly cancelled by the stabiliz-
ing fourth-derivative termaR, 7™ (where a=2581/1400).

As the termc;R27(®) is stabilizing, ond39] can ask whether

there can be an all-time valid EE ifc;R27(®)|>|aR,

—c,R3) | Our answer to this question is as follows. In

this caseaR,7™~|c,|R3 7> |c5|R37%(®). Since the dis-

! A . A L persive (third-derivative term must dominate the fourth-

o 5 1 ® 20 25 30 derivative termaR;»), it dominates even stronger the
Time (arbitrary units) sixth-derivative ternt;R27(® [see the discussion following

Eqg. (103]. As usual, the length scale is determined by a

balance between the dominant linear dissipative terms,

61,7~ cs| R2n®<aR ¥ ~R(n7,), [see the arguments

nant. Therefore, it is the dispersive term which is to balancéOIIOWing Eq. (103]. Thus,. the destabilizing nonlinear term
dds the greatest one; there is no other term that could serve as

the nonlinear one, which yields the characteristic amplitu é . ;
~1/L2. Using this, it is easy to see that the nonlinear dissi-2 counterbalance. We arrive at the conclusion that the hypo-
pative term~R,(77,), is exactlyO,, of the linear dissipa- thetical EE with the sixth-derivative term cannot be valid for

tive terms; therefore, the nonlinear term plays a significanf"”\t/'v'”m:"r'1 diod . h ffici
role. It is destabilizing, and numerical simulations indicate e have not attempted to determine the next coefficient,

that the solutions of Eq(103 blow up [see Fig. 2, which 4, because of the large volume of calculations that would be

shows the blowup of energyn contrast to Fig. Lgoverned rgquired. '.33390' on what we have said above, we expect the
by the equation rescaled to the canonical form similar to qughth-derlvatlve term to be nondegenerate and destabilizing,
(96) and then no single EE can be globally valid under the cir-

cumstances. It follows that the G35’32) is the most general
_ one. The validity conditiodV>R? (which would be suffi-
M NN2E Mazz Ky cient even ifc, were nondegene;atean be relaxed a bit; it
+e[ 9+ M52, (1120/2581( 7,),]=0, is enough to require that the capillary term dominates the
(104) (presumably nondegenerateighth-derivative one W/L3
>R//L8 (With L?~W/5 [see Eg. (90)], we get
W™2/(55?R])>1.) The EE(102) is valid locally only, under

100 1000

1 10

0.1

“Energy” (arbitrary units)

0.00010.001 001

FIG. 2. Evolution of energy indicating that the solutions of Eq.
(104 blow up.

with k=0 ande=1; we have observed similar blowup be- X
havior with all the values of we tested in the range from the instantaneous VG89). el (o

102 to 1(7]. The thickness of the real film, of course, is T, however, the first nondegenerate terR; 7
bounded uniformly for all time. Hence, ELO3) (whichcan ~ turned out to be stabilizing, the EE02) would have a do-

be good for a limited timeis not globally valid. Physically, ~main of global validity, albeit a very limited one. It is
we believe that the growth of amplitude will be arrested byStraightforward to find the corresponding global VCs. In-
viscosity after small length scales develop, which would vio-déed, the balance between this term and the destabilizing
late the smalR/L VC for the single EE description. So the one,Re™ *7*™~&7,,, yields the length scale,

EE (103 cannot be valid for large times. om—1

The hypothetical case when a higher-derivative term Lam-2__° (105
«RZ""17(2V s the dominant stabilizin i b 5

&y g one remains to be

considered[In particular, this implies that 8n=m (say),

c,<1 for n<m, c,~1, andc, has an appropriate sign;

Cn>0 if mis even andc,<0 if mis odd] We do not R ( 5)1/(2m2)
C

Using this length scale, the “modifie@- VC takes the form

believe this actually happens; such terms are traced back to | — <1, (106)
be due to the inertia terms in the momentum NS equations, L Re

the same inertia terms which give the destabilizing second-

derivative term of Eq(102), and it seems unlikely that the and the small-slope VC becomes

same physical cause can be responsible for both stabilization 1 s 1/(m—1)

and destabilization. Therefore, we believe the first nondegen- e <1. (107
erate term will turn out to beestabilizing L2 | RS(2mD

Based on thélinearn studies[38] of the Orr-Sommerfeld
equation, we have computed the next coefficient, whichhe (relaxed conditions of dominance areWn*)
shows that, albeit stabilizing, the sixth-derivative term is<RZ™ *7®™ and R p®W<RZ™ 15CM  je, W
again degenerate:cy=—16173184/17186638218%5 <R:™Y/L2™ 4 and R3(R./L)?™ *>1 [which with Eq.
—0.941x 10" °. (This is also remarkably close to the fourth- (105 are easy to recast in terms of the global parameters
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only]. The ratio of the nonlinear dissipative term, cannot be good for all timgThe conditions of such a local
«Rs(n7,),, to the stabilizing one,«R2™17m s  (in time) validity are given by Eq(89).] Under certain para-
A/(R./L)2™2 which is required to be small—otherwise, metric conditions, thénumerical solutions of that EE blow
we can have the blowup of solutions, similar to the case wittp due to a nonlineaiquadratic, second-derivativeestabi-
the termeR,7* being dominant. The comparison of dissi- lizing term.
pative term,<R2™~17(2M  to the dispersive termx 7,,,, The EE(82) is relatively easy for numerical simulations
shows that the latter can be greater or smaller than the forméf the 3D waves in the inclined film. We have obtained good
depending  upon  whether RZ™YL2M3<1  or agreement with transient states and transitions observed in
Rgm— 1 2m-3s.1 the ph)&sflpal e>f<per|r;]1'err11tshof (I;QQQ]. U.nder certalrf1 %araErrIIEet—
2m-1;, 2m-3 ; P ric conditions for which the dissipative terms of the are
WhenR; /L <=1 (dispersion is largg the charac- small, we observed self-organizaﬁi(:ﬁnom the initial white-
noise small-amplitude conditionsf unusual highly ordered
patterns of solitonlike structures on the film surfattee pat-

teristic amplitude, obtained by balancing the tesm, with
the dispersive term, is L [hence, the small-amplitude VC,

gfn%l /chﬂﬁggis tk:,\elz 'th Elgu((jleoz ]det(e): :?Tﬁ:ggi l‘IJ.:Ién(I:En tern consists of two traveling-wave subpatterns which move
hC T h hp domi bilizi y 9 with different velocities. The studies of the evolution equa-
the term «zz, with the dominant stabilizing termA  nn (g2) will be published elsewherésee also Ref§4,22)).

~ 2m-1 i - i - . .
(R;/L)"™"". Using the global-parameter estimate of the A similar analysis leads to analogous single EE theory of
length scale[Eq. (105)], all of the above conditions are , jm fiowing down a vertical “fiber.” We believe that simi-

readily reduced to certain global V@xpressed in tgrmg of lar theories can be useful for a variety of other systems.
global parameters onlywe do not write them here, in view

of the likely nonreality of the imaginary case of dominance

of the term« R2n7177(2n) ACKNOWLEDGMENT
< .
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Energy.
VI. SUMMARY
We have considered flow of a liquid film down an in- APPENDIX: VALIDITY CONDITIONS

clined plane. We have posed and studied the following ques-
tions: What are the least restrictive parametric conditions fo
which the wavy film flow can be approximated for all time
by a single(local) evolution equation, and whdif any) is
the most general form of such an equation?

We have argued that the dissipative-dispersive evolution
equation(82) [which we derived by an iterative perturbation
method of a multiparametric typés such a general EE. Any Estimatingu, from Eq.(77), we have
all-time valid EE derived by a single-parameter technique is
necessarily nothing else but essentially the general EE in ( 1 1 R cotf cotf R W W W

From Eq.(73), the estimate ofv,, in terms of the basic
E)arameters and length and amplitude scales, is

1 1 Rcot6é RW W

W~ max A. (Al

which some terms have been omitted. Also, the domain ofi;~max 3 ova' 52 52 w2 'T7 54 S2va va
validity of such a “partial” EE is necessarily subdomairof Z7 Y 2% Z Y YARVAL S
the “umbrella” domain of global validity given by Eq$93) (A2)

and (94). [In particular, in such domains the amplitude of . ) .
waves is necessarily much smaller than the mean film thickl obtaining a solvable equation for the boundary condition
ness] onw;, atx=1 [Eq. (71)], we have dropped the term ,(x

It is clear that any evolution equation which follows from = 1)- This implies
a multiparametric approactsuch as the iterative technique
we have employed in this paperan be also obtained with U <Wgy  (X=1). (A3)
the conventional SP approach. However, the significant ad- )
vantage of the MP derivation is that it covers at once allUsing theOy, estimates fow,, Eq. (A2), andwy,(x=1) ,
possible SP derivations of EEthe number of which is, in  Ed- (71), the above requirement reduces to
principle, infinite in the SP approach, corresponding to the

different choices of the small-parameter powers for the sys- _ 1 R cotd cotd R
tem parametejs Also, comparing the two derivations of U (X=1)~max —. —=5. . — 7 77
) e R Z° 7Y Z° Z Y

even aparticular EE, the MP derivation is justifiable for
much less restrictive domains of the parameter space. W W W\/A A

The theory also yields the explicit approximate expres- Eviiwertiwrl 102 <W1X(x:1)~—2. (A4)
sions in terms of film thickness for the pressure and compo- VAR VA z
nents of velocityEgs.(50), (42), (58), and(36)], and thus a . o - _

We have derived an EELO0) containing additional high- ~addition, the following conditions:
derivative terms which can be essential near the threshold of
instability, R~R,, if the surface tension is sufficiently small. cotd
However, this EE102) is good for a limited time only and

<1, (A5)
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Z\(cotd 1 A6
v\ v <b (A6)

W

?<1, (A7)
<1, A8
o~ (A8)

and
Z)|w 1 A9
¥\ {3 <1 (A9)

These conditions, along with Eg&ll) and (28)—(31), form

A. L. FRENKEL AND K. INDIRESHKUMAR
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A 1 1 R coté coto

Vi~ max

R W W W Acot§ AW AW Rcotd
ZNEVZ Y N 2V

RW RW Rcotd§ RW RW

YZ'zve TY Tv2z TVe| (A12)

Using the estimate of, [Eq. (59)] and the condition§A10),
it is easy to see that;<vy. The VCs(A10) guarantee that
all the terms involvingwng, ug, Vg, Pg, Wy, Ug, V4, andp;
that were dropped in obtaining solvable ODEs for the same
quantities are small in comparison with the terms that were
retained.

Estimating theO,, of various terms in Eq(82), and not-

the complete set of validity conditions for the present theorying that <R or §~R, we find that

They are sufficient to justify all the simplifications of the

equations. Thus, the complete set of VCs is

1 1 R cotd Zcoté RW W [Z\WZ

ma{A;gZTT??@(ﬂW <1.

(A10)

Using these conditions, it is easy to see thgtkw, and
U <Uo.

One can estimate th®y, of Rp;, by using Eq.(B6) of
Ref.[25] as

R A 1 1 R cotd

PrmmaX| 7 230 zv2 7220 72
cots R W W W\ a1
Y2 ,TZ,?,ZZY21Y4 - ( )

Using the conditiongA10), it is easy to show thaRp,/Z
<Rpy/Z or p;<<pg. By using Eq.(B12) of Ref.[25], one
can estimate th®,, of v; as

AI?,?"Z,TIT,_I_I_ =

1 1 6 cotd Zcotdé W W WZ(A)

R 1 1 6 cotf cotfz W WZ W (R
T max ,—2,—2,2,7,7,?,W,ﬁ 7
<1. (A14)

Hence, the paramet&/T is small as a consequence of the
smallness of other parameters in E410), and thus can be
omitted from there. Also, Eq87) yields cotd/Z<R/Z<1, so
that the parameter cétZ can be omitted as well. The some-
what simplified validity conditions are

(which, in turn, significantly simplify[see Eq.(89)] if
Y=2Z).
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